RNF111/Arkadia is regulated by DNA methylation and affects TGF-β/Smad signaling associated invasion in NSCLC cells.
摘要:
RNF111/Arkadia is a critical regulator of TGF-β signaling, being required for SMAD3-mediated responses such as TGF-β-induced repression of E-cadherin. Previous studies show that mutations in RNF111 in human cancers are rare and RNF111 promotes lung tumor metastasis. However, the epigenetic mechanisms underlying the role of RNF111 in non-small cell lung cancer (NSCLC) metastasis remain unknown. Here, we mainly focused on low- (95C) and high-metastatic (95D) NSCLC cell lines, which share a similar genetic background, and investigated the methylation-based regulation of RNF111 expression. Clonal bisulfite sequencing, real-time qRT-PCR, western blot analysis, luciferase reporter assays, RNA interference, chromatin immunoprecipitation (ChIP) assay and transwell migration and invasion assays were performed on human NSCLC cell lines 95C and 95D. RNF111 was high-expressed in 95D cells, which showed low-level methylation at -459CpG site in RNF111 promoter. The opposite results were obtained in 95C cells. Cell-based and biochemical assays revealed that -459CpG methylation can inhibit RNF111 transcriptional expression by interfering with the recruitment of Sp1 to RNF111 promoter. On TGF-β stimulation, siRNA-mediated RNF111 knockdown inhibited TGF-β/Smad signaling activity and Snail (an inducer of metastasis) expression, and enhanced E-cadherin (an epithelial-to-mesenchymal transition marker) expression in 95C and 95D cells. Furthermore, demethylation-induced upregulation of RNF111 enhanced phosphorylation of SMAD3 and Snail expression, and repressed E-cadherin expression in 95C cells expressing low RNF111. Our results suggest that -459CpG methylation in Sp1-binding site of RNF111 promoter transcriptionally decreases RNF111 expression, which inhibits TGF-β/Smad signaling associated invasion in NSCLC cells.
收起
展开
DOI:
10.1016/j.lungcan.2015.07.010
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(393)
参考文献(0)
引证文献(8)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无