Serotonergic dysfunction in the A53T alpha-synuclein mouse model of Parkinson's disease.
Parkinson's disease, neuropathologically defined by the aggregation of α-synuclein, is characterized by neuropsychiatric symptoms such as depression and anxiety preceding the onset of motor symptoms. A loss of serotonergic neurons or their projections into the hippocampus and alterations in serotonin release may be linked to these symptoms. Here, we investigate the effect of human A53T α-synuclein on serotonergic neurons using 12-months-old transgenic mice. We detected human α-synuclein in the perikarya of brainstem median and dorsal raphe neurons as well as in serotonergic fibers in the hippocampus. Despite intracellular α-synuclein accumulation there was no loss of serotonergic neurons in dorsal and median raphe nuclei of A53T α-synuclein mice. However, serotonin levels were significantly reduced in the brainstem. In addition, serotonergic fiber density in the dorsal dentate gyrus was significantly less dense in transgenic mice. Interestingly, we detected a significantly compromised increase in doublecortin+ neuroblasts after chronic treatment with fluoxetine at the site of reduced serotonergic innervation, the infrapyramidal blade of the dorsal dentate gyrus in A53T α-synuclein mice. This suggests that α-synuclein affects serotonergic projections in a spatially distinct pattern within the hippocampus thereby influencing the response to antidepressant treatment.
Deusser J
,Schmidt S
,Ettle B
,Plötz S
,Huber S
,Müller CP
,Masliah E
,Winkler J
,Kohl Z
... -
《-》
Severely impaired hippocampal neurogenesis associates with an early serotonergic deficit in a BAC α-synuclein transgenic rat model of Parkinson's disease.
Parkinson's disease (PD) is a multisystem disorder, involving several monoaminergic neurotransmitter systems resulting in a broad range of motor and non-motor symptoms. Pathological hallmarks of PD are the loss of dopaminergic neurons and the accumulation of alpha-synuclein, however also being present in the serotonergic raphe nuclei early in the disease course. The dysfunction of the serotonergic system projecting to the hippocampus may contribute to early non-motor symptoms such as anxiety and depression. The adult hippocampal dentate gyrus (DG), a unique niche of the forebrain continuously generating new neurons, may particularly present enhanced susceptibility towards accumulating alpha-synuclein levels. The underlying molecular mechanisms in the context of neuronal maturation and survival of new-born neurons are yet not well understood. To characterize the effects of overexpression of human full-length alpha-synuclein on hippocampal cellular and synaptic plasticity, we used a recently generated BAC alpha-synuclein transgenic rat model showing important features of PD such as widespread and progressive alpha-synuclein aggregation pathology, dopamine loss and age-dependent motor decline. At the age of four months, thus prior to the occurrence of the motor phenotype, we observed a profoundly impaired dendritogenesis of neuroblasts in the hippocampal DG resulting in severely reduced survival of adult new-born neurons. Diminished neurogenesis concurred with a serotonergic deficit in the hippocampus as defined by reduced levels of serotonin (5-HT) 1B receptor, decreased 5-HT neurotransmitter levels, and a loss of serotonergic nerve terminals innervating the DG/CA3 subfield, while the number of serotonergic neurons in the raphe nuclei remained unchanged. Moreover, alpha-synuclein overexpression reduced proteins involved in vesicle release, in particular synapsin-1 and Rab3 interacting molecule (RIM3), in conjunction with an altered ultrastructural architecture of hippocampal synapses. Importantly, BAC alpha-synuclein rats showed an early anxiety-like phenotype consisting of reduced exploratory behavior and feeding. Taken together, these findings imply that accumulating alpha-synuclein severely affects hippocampal neurogenesis paralleled by impaired 5-HT neurotransmission prior to the onset of aggregation pathology and overt motor deficits in this transgenic rat model of PD.
Kohl Z
,Ben Abdallah N
,Vogelgsang J
,Tischer L
,Deusser J
,Amato D
,Anderson S
,Müller CP
,Riess O
,Masliah E
,Nuber S
,Winkler J
... -
《-》
Serotonergic pathology and disease burden in the premotor and motor phase of A53T α-synuclein parkinsonism: a cross-sectional study.
Because of the highly penetrant gene mutation and clinical features consistent with idiopathic Parkinson's disease, carriers of the autosomal dominant Ala53Thr (A53T; 209G→A) point mutation in the α-synuclein (SNCA) gene are an ideal population to study the premotor phase and evolution of Parkinson's pathology. Given the known neurochemical changes in the serotonergic system and their association with symptoms of Parkinson's disease, we hypothesised that carriers of the A53T SNCA mutation might show abnormalities in the serotonergic neurotransmitter system before the diagnosis of Parkinson's disease, and that this pathology might be associated with measures of Parkinson's burden.
In this cross-sectional study, we recruited carriers of the A53T SNCA mutation from specialist Movement Disorders clinics in Athens, Greece, and Salerno, Italy, and a cohort of healthy controls with no personal or family history of neurological or psychiatric disorders from London, UK (recruited via public advertisement) who were age matched to the A53T SNCA carriers. We also recruited one cohort of patients with idiopathic Parkinson's disease (cohort 1) from Movement Disorders clinics in London, UK, and retrieved data on a second cohort of such patients (cohort 2; n=40) who had been scanned with a different scanner. 7-day continuous recording of motor function was used to determine the Parkinson's disease status of the A53T carriers. To assess whether serotonergic abnormalities were present, we used [11C]DASB PET non-displaceable binding to quantify serotonin transporter density. We constructed brain topographic maps reflecting Braak stages 1-6 and used these as seed maps to calculate [11C]DASB non-displaceable binding potential in our cohort of A53T SNCA carriers. Additionally, all participants underwent a battery of clinical assessments to determine motor and non-motor symptoms and cognitive status, and [123I]FP-CIT single-photon emission CT (SPECT) to assess striatal dopamine transporter binding and MRI for volumetric analyses to assess whether pathology is associated with measures of Parkinson's disease burden.
Between Sept 1, 2016, and Sept 30, 2018, we recruited 14 A53T SNCA carriers, 25 healthy controls, and 25 patients with idiopathic Parkinson's disease. Seven (50%) of 14 A53T SCNA carriers were confirmed to have motor symptoms and confirmed to have Parkinson's disease, and the absence of motor symptoms was confirmed in seven (50%) A53T SCNA carriers (ie, premotor), in whom [123I]FP-CIT SPECT confirmed the absence of striatal dopaminergic deficits. Compared with healthy controls, premotor A53T SNCA carriers showed loss of [11C]DASB non-displaceable binding potential in the ventral (p<0·0001) and dorsal (p=0·0002) raphe nuclei, caudate (p=0·00015), putamen (p=0·036), thalamus (p=0·00074), hypothalamus (p<0·0001), amygdala (p=0·0041), and brainstem (p=0·046); and in A53T SNCA carriers with Parkinson's disease this loss was extended to the hippocampus (p=0·0051), anterior (p=0·022) and posterior cingulate (p=0·036), insula (p=0·0051), frontal (p=0·0016), parietal (p=0·019), temporal (p<0·0001), and occipital (p=0·0053) cortices. A53T SNCA carriers with Parkinson's disease showed a loss of striatal [123I]FP-CIT-specific binding ratio compared with healthy controls (p<0·0001). Premotor A53T SNCA carriers had loss of [11C]DASB non-displaceable binding potential in brain areas corresponding to Braak stages 1-3, whereas [11C]DASB non-displaceable binding potential was largely preserved in areas corresponding to Braak stages 4-6. Except for one participant who was diagnosed with Parkinson's disease in the past year, all A53T SNCA carriers with Parkinson's disease had decreases in [11C]DASB non-displaceable binding potential in brain areas corresponding to Braak stages 1-6. Decreases in [11C]DASB non-displaceable binding potential in the brainstem were associated with increased Movement Disorder Score-Unified Parkinson's Disease Rating Scale total scores in all A53T SNCA carriers (r -0·66, 95% CI -0·88 to -0·20; p=0·0099), idiopathic Parkinson's disease cohort 1 (r -0·66, -0·84 to -0·36; p=0·00031), and idiopathic Parkinson's disease cohort 2 (r -0·71, -0·84 to -0·52; p<0·0001).
The presence of serotonergic pathology in premotor A53T SNCA carriers preceded development of dopaminergic pathology and motor symptoms and was associated with disease burden, highlighting the potential early role of serotonergic pathology in the progression of Parkinson's disease. Our findings provide evidence that molecular imaging of serotonin transporters could be used to visualise premotor pathology of Parkinson's disease in vivo. Future work might establish whether serotonin transporter imaging is suitable as an adjunctive tool for screening and monitoring progression for individuals at risk or patients with Parkinson's disease to complement dopaminergic imaging, or as a marker of Parkinson's burden in clinical trials.
Lily Safra Hope Foundation and National Institute for Health Research (NIHR) Biomedical Research Centre at King's College London.
Wilson H
,Dervenoulas G
,Pagano G
,Koros C
,Yousaf T
,Picillo M
,Polychronis S
,Simitsi A
,Giordano B
,Chappell Z
,Corcoran B
,Stamelou M
,Gunn RN
,Pellecchia MT
,Rabiner EA
,Barone P
,Stefanis L
,Politis M
... -
《-》
Layer-specific axonal degeneration of serotonergic fibers in the prefrontal cortex of aged A53T α-synuclein-expressing mice.
Axonal pathology precedes dopaminergic cell loss in Parkinson's disease (PD), indicating a dying back axonopathy of nigrostriatal projections. Although most attention focused on the dopaminergic system, increasing evidence implies a compromised serotonergic system in PD as well. By combining immunohistological and biochemical approaches, a profound layer-specific reduction of the serotonergic input to the prefrontal cortex (PFC) layers II and V/VI in aged mutant A53T α-synuclein-expressing mice (A53T mice) was detected. In addition, the altered fiber network was characterized by swollen axons and enlarged axonal varicosities within all PFC layers, but most pronounced in PFC layer I. Although prefrontal serotonin levels and synaptic protein expression were preserved, aged A53T mice showed increased levels of kinesin family member 1a and vesicular monoamine transporter 2. Together with increased tryptophan hydroxylase 2 mRNA levels in the raphe nuclei and an elevated serotonin receptor 1b expression in the PFC, these findings point to compensatory mechanisms within the serotonergic system to overcome the reduced neuritic input to the PFC in this transgenic animal model for PD.
Wihan J
,Grosch J
,Kalinichenko LS
,Müller CP
,Winkler J
,Kohl Z
... -
《-》
Genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T Parkinson's disease mouse model.
Alpha-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD). A robust transgenic mouse model has been generated that overexpresses the mutant human A53T alpha-synuclein under the mouse prion protein gene promoter; these mice develop age-dependent motor deficits. Recently, compared to wild-type (WT) littermates, A53T alpha-synuclein mice were reported to display non-motor symptom deficits, e.g., anxiety-like and depressive-like behaviors, odor discrimination and detection impairments, and gastrointestinal dysfunction, at 6 months of age or older. However, the differences between heterozygous and homozygous mice in terms of non-motor symptoms and whether the genomic DNA levels of alpha-synuclein correlate with the symptoms have not yet been elucidated. In the present work, we used littermate WT and heterozygous and homozygous A53T mice that were characterized by a modified genotyping protocol and observed a unilateral decline in the dopamine transporter (DAT) distribution from 3 months to 12 months of age in homozygous mice. We evaluated non-motor symptoms by measuring colon motility, anxiety-like and depressive-like behaviors, and motor coordination. The results showed that homozygous A53T mice exhibited earlier abnormal non-motor symptoms compared to their heterozygous littermates. The severity of impaired colon motility as well as anxiety-like and depressive-like behaviors were correlated with the genomic DNA levels of A53T mutant alpha-synuclein. More noticeable, motor coordination aberrances were also observed in homozygous A53T mice. This study provides direct evidence that the genomic DNA levels of mutant alpha-synuclein correlate with non-motor symptoms in an A53T mouse model, indicating that the genomic DNA levels of mutant alpha-synuclein should be tightly manipulated in PD model studies.
Wang W
,Song N
,Jia F
,Tang T
,Bao W
,Zuo C
,Xie J
,Jiang H
... -
《-》