Oxymatrine attenuated hypoxic-ischemic brain damage in neonatal rats via improving antioxidant enzyme activities and inhibiting cell death.

来自 PUBMED

作者:

Zhao PZhou RLi HNYao WXQiao HQWang SJNiu YSun TLi YXYu JQ

展开

摘要:

Oxymatrine (OMT), an active constituent of Chinese herb Sophora flavescens Ait, has been proved to possess anti-tumor, anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Previous study has demonstrated that OMT had protective roles on multiple in vitro and in vivo brain injury models including regulation of apoptosis-related proteins caspase-3, Bax and Bcl-2. In this study, we investigated whether this protective effect could apply to neonatal hypoxic-ischemic brain damage. Seven-day-old Sprague-Dawley rats were treated with the left carotid artery ligation followed by exposure to 8% oxygen (balanced with nitrogen) for 2.5 h at 37 °C. In sham group rats, neither ligation nor hypoxia was performed. After two successive days intraperitoneal injection with OMT (30, 60 and 120 mg/kg), Nimodipine (1 mg/kg), and saline, brain infarct volume was estimated, histomorphology changes were performed by hematoxylin-eosin (HE) staining as well as electron microscopy. In addition, the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC), as well as production of malondialdehyde (MDA) were assayed in ipsilateral hemisphere homogenates to evaluate the redox status after hypoxic-ischemic. Expression of apoptosis-related proteins Caspase-3, Bax and Bcl-2 in brain were analyzed by western-blot analysis and immunofluorescence. Administration of OMT significantly decreased brain infarct volume and the percentage of injured cells, and ameliorated histopathology and morphological injury as well. Furthermore, OMT obviously increased the activities of SOD, GSH-Px, CAT and T-AOC, and decreased MDA content. Western-blot analysis showed a marked decrease in Caspase-3 expression and increase in the ratio of Bcl-2/Bax after OMT (120 mg/kg) post-treatment as compared with hypoxic-ischemic group. These results suggest that OMT exerts a neuroprotective effect against hypoxic-ischemic brain damage in neonatal rats, which is likely to be mediated through increasing anti-oxidant enzyme activities and inhibiting cell death.

收起

展开

DOI:

10.1016/j.neuint.2015.06.008

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(281)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读