Temporal artery biopsy is not required in all cases of suspected giant cell arteritis.
Temporal artery biopsy (TAB) is performed during the diagnostic workup for giant cell arteritis (GCA), a vasculitis with the potential to cause irreversible blindness or stroke. However, treatment is often started on clinical grounds, and TAB result frequently does not influence patient management. The aim of this study was to assess the need for TAB in cases of suspected GCA.
We performed a retrospective review of 185 TABs performed in our institution from 1990 to 2010. Patients were identified through the Hospital In-Patient Enquiry database and theater records. Clinical findings, erythrocyte sedimentation rate, steroid treatment preoperatively, American College of Rheumatology (ACR) criteria for GCA score, biopsy result, and follow-up were recorded.
Fifty-eight (31.4%) biopsies were positive for GCA. Presence of jaw claudication (P = 0.001), abnormal fundoscopy (P = 0.001), and raised erythrocyte sedimentation rate (P = 0.001) were significantly associated with GCA. The strongest association with positive biopsy was seen with the prebiopsy ACR score (P < 0.001). Twenty-four (13.7%) patients had undergone biopsy, despite no potential for meeting ACR criteria preoperatively. None of these were positive. Overall, 29 (16.4%) patients had management altered by TAB result.
Our results confirm that TAB does not affect management in the majority of patients with suspected GCA. We conclude that TAB has benefit only for patients who score 2 or 3 on the ACR criteria for GCA without biopsy.
Quinn EM
,Kearney DE
,Kelly J
,Keohane C
,Redmond HP
... -
《-》
Halo sign on temporal artery ultrasound versus temporal artery biopsy for giant cell arteritis.
Giant cell arteritis (GCA) is a systemic, inflammatory vasculitis primarily affecting people over the age of 50 years. GCA is treated as a medical emergency due to the potential for sudden, irreversible visual loss. Temporal artery biopsy (TAB) is one of the five criteria of the American College of Rheumatology (ACR) 1990 classification, which is used to aid the diagnosis of GCA. TAB is an invasive test, and it can be slow to obtain a result due to delays in performing the procedure and the time taken for histopathologic assessment. Temporal artery ultrasonography (US) has been demonstrated to show findings in people with GCA such as the halo sign (a hypoechoic circumferential wall thickening due to oedema), stenosis or occlusion that can help to confirm a diagnosis more swiftly and less invasively, but requiring more subjective interpretation. This review will help to determine the role of these investigations in clinical practice.
To evaluate the sensitivity and specificity of the halo sign on temporal artery US, using the ACR 1990 classification as a reference standard, to investigate whether US could be used as triage for TAB. To compare the accuracy of US with TAB in the subset of paired studies that have obtained both tests on the same patients, to investigate whether it could replace TAB as one of the criteria in the ACR 1990 classification.
We used standard Cochrane search methods for diagnostic accuracy. The date of the search was 13 September 2022.
We included all participants with clinically suspected GCA who were investigated for the presence of the halo sign on temporal artery US, using the ACR 1990 criteria as a reference standard. We included studies with participants with a prior diagnosis of polymyalgia rheumatica. We excluded studies if participants had had two or more weeks of steroid treatment prior to the investigations. We also included any comparative test accuracy studies of the halo sign on temporal artery US versus TAB, with use of the 1990 ACR diagnostic criteria as a reference standard. Although we have chosen to use this classification for the purpose of the meta-analysis, we accept that it incorporates unavoidable incorporation bias, as TAB is itself one of the five criteria. This increases the specificity of TAB, making it difficult to compare with US. We excluded case-control studies, as they overestimate accuracy, as well as case series in which all participants had a prior diagnosis of GCA, as they can only address sensitivity and not specificity.
Two review authors independently assessed the studies for inclusion in the review. They extracted data using a standardised data collection form and employed the QUADAS-2 tool to assess methodological quality. As not enough studies reported data at our prespecified halo threshold of 0.3 mm, we fitted hierarchical summary receiver operating characteristic (ROC) models to estimate US sensitivity and also to compare US with TAB. We graded the certainty of the evidence using the GRADE approach.
Temporal artery ultrasound was investigated in 15 studies (617 participants with GCA out of 1479, 41.7%), with sample sizes ranging from 20 to 381 participants (median 69). There was wide variation in sensitivity with a median value of 0.78 (interquartile range (IQR) 0.45 to 0.83; range 0.03 to 1.00), while specificity was fair to good in most studies with a median value of 0.91 (IQR 0.78 to 1.00; range 0.40 to 1.00) and four studies with a specificity of 1.00. The hierarchical summary receiver operating characteristic (HSROC) estimate of sensitivity (95% confidence interval (CI)) at the high specificity of 0.95 was 0.51 (0.21 to 0.81), and 0.84 (0.58 to 0.95) at 0.80 specificity. We considered the evidence on sensitivity and specificity as of very low certainty due to risk of bias (-1), imprecision (-1), and inconsistency (-1). Only four studies reported data at a halo cut-off > 0.3 mm, finding the following sensitivities and specificities (95% CI): 0.80 (0.56 to 0.94) and 0.94 (0.81 to 0.99) in 55 participants; 0.10 (0.00 to 0.45) and 1.00 (0.84 to 1.00) in 31 participants; 0.73 (0.54 to 0.88) and 1.00 (0.93 to 1.00) in 82 participants; 0.83 (0.63 to 0.95) and 0.72 (0.64 to 0.79) in 182 participants. Data on a direct comparison of temporal artery US with biopsy were obtained from 11 studies (808 participants; 460 with GCA, 56.9%). The sensitivity of US ranged between 0.03 and 1.00 with a median of 0.75, while that of TAB ranged between 0.33 and 0.92 with a median of 0.73. The specificity was 1.00 in four studies for US and in seven for TAB. At high specificity (0.95), the sensitivity of US and TAB were 0.50 (95% CI 0.24 to 0.76) versus 0.80 (95% CI 0.57 to 0.93), respectively, and at low specificity (0.80) they were 0.73 (95% CI 0.49 to 0.88) versus 0.92 (95% CI 0.69 to 0.98). We considered the comparative evidence on the sensitivity of US versus TAB to be of very low certainty because specificity was overestimated for TAB since it is one of the criteria used in the reference standard (-1), together with downgrade due to risk of bias (-1), imprecision (-1), and inconsistency (-1) for both sensitivity and specificity.
There is limited published evidence on the accuracy of temporal artery US for detecting GCA. Ultrasound seems to be moderately sensitive when the specificity is good, but data were heterogeneous across studies and either did not use the same halo thickness threshold or did not report it. We can draw no conclusions from accuracy studies on whether US can replace TAB for diagnosing GCA given the very low certainty of the evidence. Future research could consider using the 2016 revision of the ACR criteria as a reference standard, which will limit incorporation bias of TAB into the reference standard.
Pouncey AL
,Yeldham G
,Magan T
,Lucenteforte E
,Jaffer U
,Virgili G
... -
《Cochrane Database of Systematic Reviews》
Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial.
To assess the diagnostic accuracy of contrast material-enhanced magnetic resonance (MR) imaging of superficial cranial arteries in the initial diagnosis of giant cell arteritis ( GCA giant cell arteritis ).
Following institutional review board approval and informed consent, 185 patients suspected of having GCA giant cell arteritis were included in a prospective three-university medical center trial. GCA giant cell arteritis was diagnosed or excluded clinically in all patients (reference standard [final clinical diagnosis]). In 53.0% of patients (98 of 185), temporal artery biopsy ( TAB temporal artery biopsy ) was performed (diagnostic standard [ TAB temporal artery biopsy ]). Two observers independently evaluated contrast-enhanced T1-weighted MR images of superficial cranial arteries by using a four-point scale. Diagnostic accuracy, involvement pattern, and systemic corticosteroid ( sCS systemic corticosteroid ) therapy effects were assessed in comparison with the reference standard (total study cohort) and separately in comparison with the diagnostic standard TAB temporal artery biopsy ( TAB temporal artery biopsy subcohort). Statistical analysis included diagnostic accuracy parameters, interobserver agreement, and receiver operating characteristic analysis.
Sensitivity of MR imaging was 78.4% and specificity was 90.4% for the total study cohort, and sensitivity was 88.7% and specificity was 75.0% for the TAB temporal artery biopsy subcohort (first observer). Diagnostic accuracy was comparable for both observers, with good interobserver agreement ( TAB temporal artery biopsy subcohort, κ = 0.718; total study cohort, κ = 0.676). MR imaging scores were significantly higher in patients with GCA giant cell arteritis -positive results than in patients with GCA giant cell arteritis -negative results ( TAB temporal artery biopsy subcohort and total study cohort, P < .001). Diagnostic accuracy of MR imaging was high in patients without and with sCS systemic corticosteroid therapy for 5 days or fewer (area under the curve, ≥0.9) and was decreased in patients receiving sCS systemic corticosteroid therapy for 6-14 days. In 56.5% of patients with TAB temporal artery biopsy -positive results (35 of 62), MR imaging displayed symmetrical and simultaneous inflammation of arterial segments.
MR imaging of superficial cranial arteries is accurate in the initial diagnosis of GCA giant cell arteritis . Sensitivity probably decreases after more than 5 days of sCS systemic corticosteroid therapy; thus, imaging should not be delayed. Clinical trial registration no. DRKS00000594 .
Klink T
,Geiger J
,Both M
,Ness T
,Heinzelmann S
,Reinhard M
,Holl-Ulrich K
,Duwendag D
,Vaith P
,Bley TA
... -
《-》