-
Surgery for small asymptomatic abdominal aortic aneurysms.
Filardo G
,Powell JT
,Martinez MA
,Ballard DJ
... -
《Cochrane Database of Systematic Reviews》
-
Surgery for small asymptomatic abdominal aortic aneurysms.
An abdominal aortic aneurysm (AAA) is an abnormal ballooning of the major abdominal artery. Some AAAs present as emergencies and require surgery; others remain asymptomatic. Treatment of asymptomatic AAAs depends on many factors, but the size of the aneurysm is important, as risk of rupture increases with aneurysm size. Large asymptomatic AAAs (greater than 5.5 cm in diameter) are usually repaired surgically; very small AAAs (less than 4.0 cm diameter) are monitored with ultrasonography. Debate continues over the roles of early repair versus surveillance with repair on subsequent enlargement in people with asymptomatic AAAs of 4.0 cm to 5.5 cm diameter. This is the fourth update of the review first published in 1999.
To compare mortality and costs, as well as quality of life and aneurysm rupture as secondary outcomes, following early surgical repair versus routine ultrasound surveillance in people with asymptomatic AAAs between 4.0 cm and 5.5 cm in diameter.
The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, two other databases, and two trials registers to 10 July 2019. We handsearched conference proceedings and checked reference lists of relevant studies.
We included randomised controlled trials where people with asymptomatic AAAs of 4.0 cm to 5.5 cm were randomly allocated to early repair or imaging-based surveillance at least every six months. Outcomes had to include mortality or survival.
Three review authors independently extracted data, which were cross-checked by other team members. Outcomes were mortality, costs, quality of life, and aneurysm rupture. For mortality, we estimated risk ratios (RR) (endovascular aneurysm repair only), hazard ratios (HR) (open repair only), and 95% confidence intervals (CI) based on Mantel-Haenszel Chi2 statistics at one and six years (open repair only) following randomisation.
We found no new studies for this update. Four trials with 3314 participants fulfilled the inclusion criteria. Two trials compared early open repair with surveillance and two trials compared early endovascular repair (EVAR) with surveillance. We used GRADE to access the certainty of the evidence for mortality and cost, which ranged from high to low. We downgraded the certainty in the evidence from high to moderate and low due to risk of bias concerns and imprecision (some outcomes were only reported by one study). All four trials showed an early survival benefit in the surveillance group (due to 30-day operative mortality with repair) but no evidence of differences in long-term survival. One study compared early open repair with surveillance with an adjusted HR of 0.88 (95% CI 0.75 to 1.02, mean follow-up 10 years; HR 1.21, 95% CI 0.95 to 1.54, mean follow-up 4.9 years). Pooled analysis of participant-level data from the two trials comparing early open repair with surveillance (maximum follow-up seven to eight years) showed no evidence of a difference in survival (propensity score-adjusted HR 0.99, 95% CI 0.83 to 1.18; 2226 participants; high-certainty evidence). This lack of treatment effect did not vary to three years by AAA diameter (P = 0.39), participant age (P = 0.61), or for women (HR 0.84, 95% CI 0.62 to 1.11). Two studies compared EVAR with surveillance and there was no evidence of a survival benefit for early EVAR at 12 months (RR 1.92, 95% CI 0.73 to 5.06; 846 participants; low-certainty evidence). Two trials reported costs. The mean UK health service costs per participant over the first 18 months after randomisation were higher in the open repair surgery than the surveillance group (GBP 4978 in the repair group versus GBP 3914 in the surveillance group; mean difference (MD) GBP 1064, 95% CI 796 to 1332; 1090 participants; moderate-certainty evidence). There was a similar difference after 12 years. The mean USA hospital costs for participants at six months after randomisation were higher in the EVAR group than in the surveillance group (USD 33,471 with repair versus USD 5520 with surveillance; MD USD 27,951, 95% CI 25,156 to 30,746; 614 participants; low-certainty evidence). After four years, there was no evidence of a difference in total medical costs between groups (USD 48,669 with repair versus USD 46,112 with surveillance; MD USD 2557, 95% CI -8043 to 13,156; 614 participants; low-certainty evidence). All studies reported quality of life but used different assessment measurements and results were conflicting. All four studies reported aneurysm rupture. There were very few ruptures reported in the trials of EVAR versus surveillance up to three years. In the trials of open surgery versus surveillance, there were ruptures to at least six years and there were more ruptures in the surveillance group, but most of these ruptures occurred in aneurysms that had exceeded the threshold for surgical repair.
There was no evidence of an advantage to early repair for small AAA (4.0 cm to 5.5 cm), regardless of whether open repair or EVAR is used and, at least for open repair, regardless of patient age and AAA diameter. Thus, neither early open nor early EVAR of small AAAs is supported by currently available evidence. Long-term data from the two trials investigating EVAR are not available, so, we can only draw firm conclusions regarding outcomes after the first few years for open repair. Research regarding the risks related to and management of small AAAs in ethnic minorities and women is urgently needed, as data regarding these populations are lacking.
Ulug P
,Powell JT
,Martinez MA
,Ballard DJ
,Filardo G
... -
《Cochrane Database of Systematic Reviews》
-
Endovascular repair of abdominal aortic aneurysm.
Paravastu SC
,Jayarajasingam R
,Cottam R
,Palfreyman SJ
,Michaels JA
,Thomas SM
... -
《Cochrane Database of Systematic Reviews》
-
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Ovarian cancer is the seventh most common cancer among women and a leading cause of death from gynaecological malignancies. Epithelial ovarian cancer is the most common type, accounting for around 90% of all ovarian cancers. This specific type of ovarian cancer starts in the surface layer covering the ovary or lining of the fallopian tube. Surgery is performed either before chemotherapy (upfront or primary debulking surgery (PDS)) or in the middle of a course of treatment with chemotherapy (neoadjuvant chemotherapy (NACT) and interval debulking surgery (IDS)), with the aim of removing all visible tumour and achieving no macroscopic residual disease (NMRD). The aim of this review is to investigate the prognostic impact of size of residual disease nodules (RD) in women who received upfront or interval cytoreductive surgery for advanced (stage III and IV) epithelial ovarian cancer (EOC).
To assess the prognostic impact of residual disease after primary surgery on survival outcomes for advanced (stage III and IV) epithelial ovarian cancer. In separate analyses, primary surgery included both upfront primary debulking surgery (PDS) followed by adjuvant chemotherapy and neoadjuvant chemotherapy followed by interval debulking surgery (IDS). Each residual disease threshold is considered as a separate prognostic factor.
We searched CENTRAL (2021, Issue 8), MEDLINE via Ovid (to 30 August 2021) and Embase via Ovid (to 30 August 2021).
We included survival data from studies of at least 100 women with advanced EOC after primary surgery. Residual disease was assessed as a prognostic factor in multivariate prognostic models. We excluded studies that reported fewer than 100 women, women with concurrent malignancies or studies that only reported unadjusted results. Women were included into two distinct groups: those who received PDS followed by platinum-based chemotherapy and those who received IDS, analysed separately. We included studies that reported all RD thresholds after surgery, but the main thresholds of interest were microscopic RD (labelled NMRD), RD 0.1 cm to 1 cm (small-volume residual disease (SVRD)) and RD > 1 cm (large-volume residual disease (LVRD)).
Two review authors independently abstracted data and assessed risk of bias. Where possible, we synthesised the data in meta-analysis. To assess the adequacy of adjustment factors used in multivariate Cox models, we used the 'adjustment for other prognostic factors' and 'statistical analysis and reporting' domains of the quality in prognosis studies (QUIPS) tool. We also made judgements about the certainty of the evidence for each outcome in the main comparisons, using GRADE. We examined differences between FIGO stages III and IV for different thresholds of RD after primary surgery. We considered factors such as age, grade, length of follow-up, type and experience of surgeon, and type of surgery in the interpretation of any heterogeneity. We also performed sensitivity analyses that distinguished between studies that included NMRD in RD categories of < 1 cm and those that did not. This was applicable to comparisons involving RD < 1 cm with the exception of RD < 1 cm versus NMRD. We evaluated women undergoing PDS and IDS in separate analyses.
We found 46 studies reporting multivariate prognostic analyses, including RD as a prognostic factor, which met our inclusion criteria: 22,376 women who underwent PDS and 3697 who underwent IDS, all with varying levels of RD. While we identified a range of different RD thresholds, we mainly report on comparisons that are the focus of a key area of clinical uncertainty (involving NMRD, SVRD and LVRD). The comparison involving any visible disease (RD > 0 cm) and NMRD was also important. SVRD versus NMRD in a PDS setting In PDS studies, most showed an increased risk of death in all RD groups when those with macroscopic RD (MRD) were compared to NMRD. Women who had SVRD after PDS had more than twice the risk of death compared to women with NMRD (hazard ratio (HR) 2.03, 95% confidence interval (CI) 1.80 to 2.29; I2 = 50%; 17 studies; 9404 participants; moderate-certainty). The analysis of progression-free survival found that women who had SVRD after PDS had nearly twice the risk of death compared to women with NMRD (HR 1.88, 95% CI 1.63 to 2.16; I2 = 63%; 10 studies; 6596 participants; moderate-certainty). LVRD versus SVRD in a PDS setting When we compared LVRD versus SVRD following surgery, the estimates were attenuated compared to NMRD comparisons. All analyses showed an overall survival benefit in women who had RD < 1 cm after surgery (HR 1.22, 95% CI 1.13 to 1.32; I2 = 0%; 5 studies; 6000 participants; moderate-certainty). The results were robust to analyses of progression-free survival. SVRD and LVRD versus NMRD in an IDS setting The one study that defined the categories as NMRD, SVRD and LVRD showed that women who had SVRD and LVRD after IDS had more than twice the risk of death compared to women who had NMRD (HR 2.09, 95% CI 1.20 to 3.66; 310 participants; I2 = 56%, and HR 2.23, 95% CI 1.49 to 3.34; 343 participants; I2 = 35%; very low-certainty, for SVRD versus NMRD and LVRD versus NMRD, respectively). LVRD versus SVRD + NMRD in an IDS setting Meta-analysis found that women who had LVRD had a greater risk of death and disease progression compared to women who had either SVRD or NMRD (HR 1.60, 95% CI 1.21 to 2.11; 6 studies; 1572 participants; I2 = 58% for overall survival and HR 1.76, 95% CI 1.23 to 2.52; 1145 participants; I2 = 60% for progression-free survival; very low-certainty). However, this result is biased as in all but one study it was not possible to distinguish NMRD within the < 1 cm thresholds. Only one study separated NMRD from SVRD; all others included NMRD in the SVRD group, which may create bias when comparing with LVRD, making interpretation challenging. MRD versus NMRD in an IDS setting Women who had any amount of MRD after IDS had more than twice the risk of death compared to women with NMRD (HR 2.11, 95% CI 1.35 to 3.29, I2 = 81%; 906 participants; very low-certainty).
In a PDS setting, there is moderate-certainty evidence that the amount of RD after primary surgery is a prognostic factor for overall and progression-free survival in women with advanced ovarian cancer. We separated our analysis into three distinct categories for the survival outcome including NMRD, SVRD and LVRD. After IDS, there may be only two categories required, although this is based on very low-certainty evidence, as all but one study included NMRD in the SVRD category. The one study that separated NMRD from SVRD showed no improved survival outcome in the SVRD category, compared to LVRD. Further low-certainty evidence also supported restricting to two categories, where women who had any amount of MRD after IDS had a significantly greater risk of death compared to women with NMRD. Therefore, the evidence presented in this review cannot conclude that using three categories applies in an IDS setting (very low-certainty evidence), as was supported for PDS (which has convincing moderate-certainty evidence).
Bryant A
,Hiu S
,Kunonga PT
,Gajjar K
,Craig D
,Vale L
,Winter-Roach BA
,Elattar A
,Naik R
... -
《Cochrane Database of Systematic Reviews》
-
Oxycodone for cancer-related pain.
Many people with cancer experience moderate to severe pain that requires treatment with strong opioids, such as oxycodone and morphine. Strong opioids are, however, not effective for pain in all people, neither are they well tolerated by all people. The aim of this review was to assess whether oxycodone is associated with better pain relief and tolerability than other analgesic options for adults with cancer pain. This is an updated Cochrane review previously published in 2017.
To assess the effectiveness and tolerability of oxycodone by any route of administration for pain in adults with cancer.
For this update, we searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE and MEDLINE In-Process (Ovid), Embase (Ovid), Science Citation Index, Conference Proceedings Citation Index - Science (ISI Web of Science), BIOSIS (ISI), and PsycINFO (Ovid) to November 2021. We also searched four trial registries, checked the bibliographic references of relevant studies, and contacted the authors of the included studies. We applied no language, date, or publication status restrictions.
We included randomised controlled trials (parallel-group or cross-over) comparing oxycodone (any formulation or route of administration) with placebo or an active drug (including oxycodone) for cancer background pain in adults by examining pain intensity/relief, adverse events, quality of life, and participant preference.
Two review authors independently sifted the search, extracted data and assessed the included studies using standard Cochrane methodology. We meta-analysed pain intensity data using the generic inverse variance method, and pain relief and adverse events using the Mantel-Haenszel method, or summarised these data narratively along with the quality of life and participant preference data. We assessed the overall certainty of the evidence using GRADE.
For this update, we identified 19 new studies (1836 participants) for inclusion. In total, we included 42 studies which enrolled/randomised 4485 participants, with 3945 of these analysed for efficacy and 4176 for safety. The studies examined a number of different drug comparisons. Controlled-release (CR; typically taken every 12 hours) oxycodone versus immediate-release (IR; taken every 4-6 hours) oxycodone Pooled analysis of three of the four studies comparing CR oxycodone to IR oxycodone suggest that there is little to no difference between CR and IR oxycodone in pain intensity (standardised mean difference (SMD) 0.12, 95% confidence interval (CI) -0.1 to 0.34; n = 319; very low-certainty evidence). The evidence is very uncertain about the effect on adverse events, including constipation (RR 0.71, 95% CI 0.45 to 1.13), drowsiness/somnolence (RR 1.03, 95% CI 0.69 to 1.54), nausea (RR 0.85, 95% CI 0.56 to 1.28), and vomiting (RR 0.66, 95% CI 0.38 to 1.15) (very low-certainty evidence). There were no data available for quality of life or participant preference, however, three studies suggested that treatment acceptability may be similar between groups (low-certainty evidence). CR oxycodone versus CR morphine The majority of the 24 studies comparing CR oxycodone to CR morphine reported either pain intensity (continuous variable), pain relief (dichotomous variable), or both. Pooled analysis indicated that pain intensity may be lower (better) after treatment with CR morphine than CR oxycodone (SMD 0.14, 95% CI 0.01 to 0.27; n = 882 in 7 studies; low-certainty evidence). This SMD is equivalent to a difference of 0.27 points on the Brief Pain Inventory scale (0-10 numerical rating scale), which is not clinically significant. Pooled analyses also suggested that there may be little to no difference in the proportion of participants achieving complete or significant pain relief (RR 1.02, 95% CI 0.95 to 1.10; n = 1249 in 13 studies; low-certainty evidence). The RR for constipation (RR 0.75, 95% CI 0.66 to 0.86) may be lower after treatment with CR oxycodone than after CR morphine. Pooled analyses showed that, for most of the adverse events, the CIs were wide, including no effect as well as potential benefit and harm: drowsiness/somnolence (RR 0.88, 95% CI 0.74 to 1.05), nausea (RR 0.93, 95% CI 0.77 to 1.12), and vomiting (RR 0.81, 95% CI 0.63 to 1.04) (low or very low-certainty evidence). No data were available for quality of life. The evidence is very uncertain about the treatment effects on treatment acceptability and participant preference. Other comparisons The remaining studies either compared oxycodone in various formulations or compared oxycodone to different alternative opioids. None found any clear superiority or inferiority of oxycodone for cancer pain, neither as an analgesic agent nor in terms of adverse event rates and treatment acceptability. The certainty of this evidence base was limited by the high or unclear risk of bias of the studies and by imprecision due to low or very low event rates or participant numbers for many outcomes.
The conclusions have not changed since the previous version of this review (in 2017). We found low-certainty evidence that there may be little to no difference in pain intensity, pain relief and adverse events between oxycodone and other strong opioids including morphine, commonly considered the gold standard strong opioid. Although we identified a benefit for pain relief in favour of CR morphine over CR oxycodone, this was not clinically significant and did not persist following sensitivity analysis and so we do not consider this important. However, we found that constipation and hallucinations occurred less often with CR oxycodone than with CR morphine; but the certainty of this evidence was either very low or the finding did not persist following sensitivity analysis, so these findings should be treated with utmost caution. Our conclusions are consistent with other reviews and suggest that, while the reliability of the evidence base is low, given the absence of important differences within this analysis, it seems unlikely that larger head-to-head studies of oxycodone versus morphine are justified, although well-designed trials comparing oxycodone to other strong analgesics may well be useful. For clinical purposes, oxycodone or morphine can be used as first-line oral opioids for relief of cancer pain in adults.
Schmidt-Hansen M
,Bennett MI
,Arnold S
,Bromham N
,Hilgart JS
,Page AJ
,Chi Y
... -
《Cochrane Database of Systematic Reviews》