Down-regulation of Rac GTPase-activating protein OCRL1 causes aberrant activation of Rac1 in osteoarthritis development.

来自 PUBMED

作者:

Zhu SDai JLiu HCong XChen YWu YHu HHeng BCOuyang HWZhou Y

展开

摘要:

Chondrocyte hypertrophy and mineralization are considered to be important pathologic factors in osteoarthritis (OA). We previously reported that Rac1 was aberrantly activated to promote chondrocyte hypertrophy, mineralization, and expression of matrix metalloproteinase 13 and ADAMTS in OA. However, the underlying mechanism of aberrant Rac1 activation in OA is unclear. The present study was undertaken to identify the specific molecular regulator controlling Rac1 activity in OA, as well as to investigate its function in chondrocyte hypertrophy, mineralization, and OA development. Expression levels of 28 upstream regulators of Rac1 activity, including 8 GTPase-activating proteins (GAPs) and 20 guanine nucleotide exchange factors, in OA and normal cartilage were assessed by quantitative polymerase chain reaction. Chondrocytes were transduced with lentiviral vectors encoding OCRL1, GAP, non-GAP, CA-Rac1, and DN-Rac1, either alone or in combination. Alkaline phosphatase staining was used as a marker of chondrocyte hypertrophy. Rac1 activity was analyzed by pulldown assay. Finally, OA was established in mice by surgical transection of the anterior cruciate ligament and cutting of the medial meniscus. The mice were injected intraarticularly with OCRL1-encoding lentivirus, and whole joints were assessed histologically 6 weeks after surgery. OCRL1 was abundantly expressed in normal cartilage and was the only significantly down-regulated RacGAP in OA cartilage. Overexpression of OCRL1 inhibited interleukin-1β-induced Rac1 activity, chondrocyte hypertrophy, and expression of hypertrophy-related genes. Conversely, knockdown of OCRL1 elevated Rac1 activity and promoted chondrocyte hypertrophy and mineralization. Further, OCRL1 modulated Rac1 activity via its GAP domain. Finally, intraarticular injection of OCRL1-encoding lentivirus protected against destruction and degeneration of cartilage in the mouse OA model. OCRL1 acts as a RacGAP in cartilage to impede chondrocyte hypertrophy and OA development through modulating Rac1 activity. This regulatory pathway might provide potential targets for the development of new therapies for OA.

收起

展开

DOI:

10.1002/art.39174

被引量:

17

年份:

2015

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(309)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读