-
Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study.
Dihydroartemisinin-piperaquine has been adopted as first-line artemisinin combination therapy (ACT) for multidrug-resistant Plasmodium falciparum malaria in Cambodia because of few remaining alternatives. We aimed to assess the efficacy of standard 3 day dihydroartemisinin-piperaquine treatment of uncomplicated P falciparum malaria, with and without the addition of primaquine, focusing on the factors involved in drug resistance.
In this observational cohort study, we assessed 107 adults aged 18-65 years presenting to Anlong Veng District Hospital, Oddar Meanchey Province, Cambodia, with uncomplicated P falciparum or mixed P falciparum/Plasmodium vivax infection of between 1000 and 200,000 parasites per μL of blood, and participating in a randomised clinical trial in which all had received dihydroartemisinin-piperaquine for 3 days, after which they had been randomly allocated to receive either primaquine or no primaquine. The trial was halted early due to poor dihydroartemisinin-piperaquine efficacy, and we assessed day 42 PCR-corrected therapeutic efficacy (proportion of patients with recurrence at 42 days) and evidence of drug resistance from the initial cohort. We did analyses on both the intention to treat (ITT), modified ITT (withdrawals, losses to follow-up, and those with secondary outcomes [eg, new non-recrudescent malaria infection] were censored on the last day of follow-up), and per-protocol populations of the original trial. The original trial was registered with ClinicalTrials.gov, number NCT01280162.
Between Dec 10, 2012, and Feb 18, 2014, we had enrolled 107 patients in the original trial. Enrolment was voluntarily halted on Feb 16, 2014, before reaching planned enrolment (n=150) because of poor efficacy. We had randomly allocated 50 patients to primaquine and 51 patients to no primaquine groups. PCR-adjusted Kaplan-Meier risk of P falciparum 42 day recrudescence was 54% (95% CI 45-63) in the modified ITT analysis population. We found two kelch13 propeller gene mutations associated with artemisinin resistance--a non-synonymous Cys580Tyr substitution in 70 (65%) of 107 participants, an Arg539Thr substitution in 33 (31%), and a wild-type parasite in four (4%). Unlike Arg539Thr, Cys580Tyr was accompanied by two other mutations associated with extended parasite clearance (MAL10:688956 and MAL13:1718319). This combination triple mutation was associated with a 5·4 times greater risk of treatment failure (hazard ratio 5·4 [95% CI 2·4-12]; p<0·0001) and higher piperaquine 50% inhibitory concentration (triple mutant 34 nM [28-41]; non-triple mutant 24 nM [1-27]; p=0·003) than other infections had. The drug was well tolerated, with gastrointestinal symptoms being the most common complaints.
The dramatic decline in efficacy of dihydroartemisinin-piperaquine compared with what was observed in a study at the same location in 2010 was strongly associated with a new triple mutation including the kelch13 Cys580Tyr substitution. 3 days of artemisinin as part of an artemisinin combination therapy regimen might be insufficient. Strict regulation and monitoring of antimalarial use, along with non-pharmacological approaches to malaria resistance containment, must be integral parts of the public health response to rapidly accelerating drug resistance in the region.
Armed Forces Health Surveillance Center/Global Emerging Infections Surveillance and Response System, Military Infectious Disease Research Program, National Institute of Allergy and Infectious Diseases, and American Society of Tropical Medicine and Hygiene/Burroughs Wellcome Fund.
Spring MD
,Lin JT
,Manning JE
,Vanachayangkul P
,Somethy S
,Bun R
,Se Y
,Chann S
,Ittiverakul M
,Sia-ngam P
,Kuntawunginn W
,Arsanok M
,Buathong N
,Chaorattanakawee S
,Gosi P
,Ta-aksorn W
,Chanarat N
,Sundrakes S
,Kong N
,Heng TK
,Nou S
,Teja-isavadharm P
,Pichyangkul S
,Phann ST
,Balasubramanian S
,Juliano JJ
,Meshnick SR
,Chour CM
,Prom S
,Lanteri CA
,Lon C
,Saunders DL
... -
《-》
-
Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study.
The emergence and spread of resistance in Plasmodium falciparum malaria to artemisinin combination therapies in the Greater Mekong subregion poses a major threat to malaria control and elimination. The current study is part of a multi-country, open-label, randomised clinical trial (TRACII, 2015-18) evaluating the efficacy, safety, and tolerability of triple artemisinin combination therapies. A very high rate of treatment failure after treatment with dihydroartemisinin-piperaquine was observed in Thailand, Cambodia, and Vietnam. The immediate public health importance of our findings prompted us to report the efficacy data on dihydroartemisinin-piperaquine and its determinants ahead of the results of the overall trial, which will be published later this year.
Patients aged between 2 and 65 years presenting with uncomplicated P falciparum or mixed species malaria at seven sites in Thailand, Cambodia, and Vietnam were randomly assigned to receive dihydroartemisinin-piperaquine with or without mefloquine, as part of the TRACII trial. The primary outcome was the PCR-corrected efficacy at day 42. Next-generation sequencing was used to assess the prevalence of molecular markers associated with artemisinin resistance (kelch13 mutations, in particular Cys580Tyr) and piperaquine resistance (plasmepsin-2 and plasmepsin-3 amplifications and crt mutations). This study is registered with ClinicalTrials.gov, number NCT02453308.
Between Sept 28, 2015, and Jan 18, 2018, 539 patients with acute P falciparum malaria were screened for eligibility, 292 were enrolled, and 140 received dihydroartemisinin-piperaquine. The overall Kaplan-Meier estimate of PCR-corrected efficacy of dihydroartemisinin-piperaquine at day 42 was 50·0% (95% CI 41·1-58·3). PCR-corrected efficacies for individual sites were 12·7% (2·2-33·0) in northeastern Thailand, 38·2% (15·9-60·5) in western Cambodia, 73·4% (57·0-84·3) in Ratanakiri (northeastern Cambodia), and 47·1% (33·5-59·6) in Binh Phuoc (southwestern Vietnam). Treatment failure was associated independently with plasmepsin2/3 amplification status and four mutations in the crt gene (Thr93Ser, His97Tyr, Phe145Ile, and Ile218Phe). Compared with the results of our previous TRACI trial in 2011-13, the prevalence of molecular markers of artemisinin resistance (kelch13 Cys580Tyr mutations) and piperaquine resistance (plasmepsin2/3 amplifications and crt mutations) has increased substantially in the Greater Mekong subregion in the past decade.
Dihydroartemisinin-piperaquine is not treating malaria effectively across the eastern Greater Mekong subregion. A highly drug-resistant P falciparum co-lineage is evolving, acquiring new resistance mechanisms, and spreading. Accelerated elimination of P falciparum malaria in this region is needed urgently, to prevent further spread and avoid a potential global health emergency.
UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and National Institutes of Health.
van der Pluijm RW
,Imwong M
,Chau NH
,Hoa NT
,Thuy-Nhien NT
,Thanh NV
,Jittamala P
,Hanboonkunupakarn B
,Chutasmit K
,Saelow C
,Runjarern R
,Kaewmok W
,Tripura R
,Peto TJ
,Yok S
,Suon S
,Sreng S
,Mao S
,Oun S
,Yen S
,Amaratunga C
,Lek D
,Huy R
,Dhorda M
,Chotivanich K
,Ashley EA
,Mukaka M
,Waithira N
,Cheah PY
,Maude RJ
,Amato R
,Pearson RD
,Gonçalves S
,Jacob CG
,Hamilton WL
,Fairhurst RM
,Tarning J
,Winterberg M
,Kwiatkowski DP
,Pukrittayakamee S
,Hien TT
,Day NP
,Miotto O
,White NJ
,Dondorp AM
... -
《-》
-
Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study.
Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia.
In this prospective cohort study, we enrolled patients aged 2-65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin-piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319.
Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations, higher piperaquine 50% inhibitory concentration (IC50) values, and lower mefloquine IC50 values; none had multiple pfmdr1 copies, a genetic marker of mefloquine resistance.
Dihydroartemisinin-piperaquine failures are caused by both artemisinin and piperaquine resistance, and commonly occur in places where dihydroartemisinin-piperaquine has been used in the private sector. In Cambodia, artesunate plus mefloquine may be a viable option to treat dihydroartemisinin-piperaquine failures, and a more effective first-line ACT in areas where dihydroartemisinin-piperaquine failures are common. The use of single low-dose primaquine to eliminate circulating gametocytes is needed in areas where artemisinin and ACT resistance is prevalent.
National Institute of Allergy and Infectious Diseases.
Amaratunga C
,Lim P
,Suon S
,Sreng S
,Mao S
,Sopha C
,Sam B
,Dek D
,Try V
,Amato R
,Blessborn D
,Song L
,Tullo GS
,Fay MP
,Anderson JM
,Tarning J
,Fairhurst RM
... -
《-》
-
Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial.
Artemisinin and partner-drug resistance in Plasmodium falciparum are major threats to malaria control and elimination. Triple artemisinin-based combination therapies (TACTs), which combine existing co-formulated ACTs with a second partner drug that is slowly eliminated, might provide effective treatment and delay emergence of antimalarial drug resistance.
In this multicentre, open-label, randomised trial, we recruited patients with uncomplicated P falciparum malaria at 18 hospitals and health clinics in eight countries. Eligible patients were aged 2-65 years, with acute, uncomplicated P falciparum malaria alone or mixed with non-falciparum species, and a temperature of 37·5°C or higher, or a history of fever in the past 24 h. Patients were randomly assigned (1:1) to one of two treatments using block randomisation, depending on their location: in Thailand, Cambodia, Vietnam, and Myanmar patients were assigned to either dihydroartemisinin-piperaquine or dihydroartemisinin-piperaquine plus mefloquine; at three sites in Cambodia they were assigned to either artesunate-mefloquine or dihydroartemisinin-piperaquine plus mefloquine; and in Laos, Myanmar, Bangladesh, India, and the Democratic Republic of the Congo they were assigned to either artemether-lumefantrine or artemether-lumefantrine plus amodiaquine. All drugs were administered orally and doses varied by drug combination and site. Patients were followed-up weekly for 42 days. The primary endpoint was efficacy, defined by 42-day PCR-corrected adequate clinical and parasitological response. Primary analysis was by intention to treat. A detailed assessment of safety and tolerability of the study drugs was done in all patients randomly assigned to treatment. This study is registered at ClinicalTrials.gov, NCT02453308, and is complete.
Between Aug 7, 2015, and Feb 8, 2018, 1100 patients were given either dihydroartemisinin-piperaquine (183 [17%]), dihydroartemisinin-piperaquine plus mefloquine (269 [24%]), artesunate-mefloquine (73 [7%]), artemether-lumefantrine (289 [26%]), or artemether-lumefantrine plus amodiaquine (286 [26%]). The median age was 23 years (IQR 13 to 34) and 854 (78%) of 1100 patients were male. In Cambodia, Thailand, and Vietnam the 42-day PCR-corrected efficacy after dihydroartemisinin-piperaquine plus mefloquine was 98% (149 of 152; 95% CI 94 to 100) and after dihydroartemisinin-piperaquine was 48% (67 of 141; 95% CI 39 to 56; risk difference 51%, 95% CI 42 to 59; p<0·0001). Efficacy of dihydroartemisinin-piperaquine plus mefloquine in the three sites in Myanmar was 91% (42 of 46; 95% CI 79 to 98) versus 100% (42 of 42; 95% CI 92 to 100) after dihydroartemisinin-piperaquine (risk difference 9%, 95% CI 1 to 17; p=0·12). The 42-day PCR corrected efficacy of dihydroartemisinin-piperaquine plus mefloquine (96% [68 of 71; 95% CI 88 to 99]) was non-inferior to that of artesunate-mefloquine (95% [69 of 73; 95% CI 87 to 99]) in three sites in Cambodia (risk difference 1%; 95% CI -6 to 8; p=1·00). The overall 42-day PCR-corrected efficacy of artemether-lumefantrine plus amodiaquine (98% [281 of 286; 95% CI 97 to 99]) was similar to that of artemether-lumefantrine (97% [279 of 289; 95% CI 94 to 98]; risk difference 2%, 95% CI -1 to 4; p=0·30). Both TACTs were well tolerated, although early vomiting (within 1 h) was more frequent after dihydroartemisinin-piperaquine plus mefloquine (30 [3·8%] of 794) than after dihydroartemisinin-piperaquine (eight [1·5%] of 543; p=0·012). Vomiting after artemether-lumefantrine plus amodiaquine (22 [1·3%] of 1703) and artemether-lumefantrine (11 [0·6%] of 1721) was infrequent. Adding amodiaquine to artemether-lumefantrine extended the electrocardiogram corrected QT interval (mean increase at 52 h compared with baseline of 8·8 ms [SD 18·6] vs 0·9 ms [16·1]; p<0·01) but adding mefloquine to dihydroartemisinin-piperaquine did not (mean increase of 22·1 ms [SD 19·2] for dihydroartemisinin-piperaquine vs 20·8 ms [SD 17·8] for dihydroartemisinin-piperaquine plus mefloquine; p=0·50).
Dihydroartemisinin-piperaquine plus mefloquine and artemether-lumefantrine plus amodiaquine TACTs are efficacious, well tolerated, and safe treatments of uncomplicated P falciparum malaria, including in areas with artemisinin and ACT partner-drug resistance.
UK Department for International Development, Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and US National Institutes of Health.
van der Pluijm RW
,Tripura R
,Hoglund RM
,Pyae Phyo A
,Lek D
,Ul Islam A
,Anvikar AR
,Satpathi P
,Satpathi S
,Behera PK
,Tripura A
,Baidya S
,Onyamboko M
,Chau NH
,Sovann Y
,Suon S
,Sreng S
,Mao S
,Oun S
,Yen S
,Amaratunga C
,Chutasmit K
,Saelow C
,Runcharern R
,Kaewmok W
,Hoa NT
,Thanh NV
,Hanboonkunupakarn B
,Callery JJ
,Mohanty AK
,Heaton J
,Thant M
,Gantait K
,Ghosh T
,Amato R
,Pearson RD
,Jacob CG
,Gonçalves S
,Mukaka M
,Waithira N
,Woodrow CJ
,Grobusch MP
,van Vugt M
,Fairhurst RM
,Cheah PY
,Peto TJ
,von Seidlein L
,Dhorda M
,Maude RJ
,Winterberg M
,Thuy-Nhien NT
,Kwiatkowski DP
,Imwong M
,Jittamala P
,Lin K
,Hlaing TM
,Chotivanich K
,Huy R
,Fanello C
,Ashley E
,Mayxay M
,Newton PN
,Hien TT
,Valecha N
,Smithuis F
,Pukrittayakamee S
,Faiz A
,Miotto O
,Tarning J
,Day NPJ
,White NJ
,Dondorp AM
,Tracking Resistance to Artemisinin Collaboration
... -
《-》
-
Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study.
As the prevalence of artemisinin-resistant Plasmodium falciparum malaria increases in the Greater Mekong subregion, emerging resistance to partner drugs in artemisinin combination therapies seriously threatens global efforts to treat and eliminate this disease. Molecular markers that predict failure of artemisinin combination therapy are urgently needed to monitor the spread of partner drug resistance, and to recommend alternative treatments in southeast Asia and beyond.
We did a genome-wide association study of 297 P falciparum isolates from Cambodia to investigate the relationship of 11 630 exonic single-nucleotide polymorphisms (SNPs) and 43 copy number variations (CNVs) with in-vitro piperaquine 50% inhibitory concentrations (IC50s), and tested whether these genetic variants are markers of treatment failure with dihydroartemisinin-piperaquine. We then did a survival analysis of 133 patients to determine whether candidate molecular markers predicted parasite recrudescence following dihydroartemisinin-piperaquine treatment.
Piperaquine IC50s increased significantly from 2011 to 2013 in three Cambodian provinces (2011 vs 2013 median IC50s: 20·0 nmol/L [IQR 13·7-29·0] vs 39·2 nmol/L [32·8-48·1] for Ratanakiri, 19·3 nmol/L [15·1-26·2] vs 66·2 nmol/L [49·9-83·0] for Preah Vihear, and 19·6 nmol/L [11·9-33·9] vs 81·1 nmol/L [61·3-113·1] for Pursat; all p≤10-3; Kruskal-Wallis test). Genome-wide analysis of SNPs identified a chromosome 13 region that associates with raised piperaquine IC50s. A non-synonymous SNP (encoding a Glu415Gly substitution) in this region, within a gene encoding an exonuclease, associates with parasite recrudescence following dihydroartemisinin-piperaquine treatment. Genome-wide analysis of CNVs revealed that a single copy of the mdr1 gene on chromosome 5 and a novel amplification of the plasmepsin 2 and plasmepsin 3 genes on chromosome 14 also associate with raised piperaquine IC50s. After adjusting for covariates, both exo-E415G and plasmepsin 2-3 markers significantly associate (p=3·0 × 10-8 and p=1·7 × 10-7, respectively) with decreased treatment efficacy (survival rates 0·38 [95% CI 0·25-0·51] and 0·41 [0·28-0·53], respectively).
The exo-E415G SNP and plasmepsin 2-3 amplification are markers of piperaquine resistance and dihydroartemisinin-piperaquine failures in Cambodia, and can help monitor the spread of these phenotypes into other countries of the Greater Mekong subregion, and elucidate the mechanism of piperaquine resistance. Since plasmepsins are involved in the parasite's haemoglobin-to-haemozoin conversion pathway, targeted by related antimalarials, plasmepsin 2-3 amplification probably mediates piperaquine resistance.
Intramural Research Program of the US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Wellcome Trust, Bill & Melinda Gates Foundation, Medical Research Council, and UK Department for International Development.
Amato R
,Lim P
,Miotto O
,Amaratunga C
,Dek D
,Pearson RD
,Almagro-Garcia J
,Neal AT
,Sreng S
,Suon S
,Drury E
,Jyothi D
,Stalker J
,Kwiatkowski DP
,Fairhurst RM
... -
《-》