Programmed Death-Ligand 1 Expression Predicts Tyrosine Kinase Inhibitor Response and Better Prognosis in a Cohort of Patients With Epidermal Growth Factor Receptor Mutation-Positive Lung Adenocarcinoma.

来自 PUBMED

作者:

Lin CChen XLi MLiu JQi XYang WZhang HCai ZDai YOuyang X

展开

摘要:

The immune checkpoint proteins programmed death-1/ligand (PD-1/PD-L1) play a critical role in immune escape of tumor cells. In models of epidermal growth factor receptor (EGFR)-driven non-small-cell lung cancer (NSCLC), EGFR signal upregulates PD-1/PD-L1. However, data on the clinical significance of PD1/PD-L1 expression in patients with the subtype of NSCLC carrying EGFR mutations remain limited. Immunohistochemistry was performed to evaluate the expression of PD-1, PD-L1, and CD4+ and CD8+ tumor-infiltrating T lymphocytes (TILs). In a cohort of 56 patients, PD-L1 and PD-1 was positive in 53.6% and 32.1% of tumor specimens, respectively. PD-L1(+) patients had a significantly greater disease-control rate (P = .004), in association with longer progression-free survival (P = .001) after EGFR-tyrosine kinase inhibitor (TKI) therapy and overall survival (P = .004), and no correlation between PD-1 positivity and clinical outcomes was observed. PD-L1 expression was not significantly associated with either clinicopathologic features or TILs. These findings suggest that this subtype of EGFR mutation-positive NSCLC is highly eligible for PD-1/PD-L1 immunotherapy. PD-L1 might represent a favorable biomarker candidate for the response to EGFR-TKIs and outcomes of these patients with NSCLC.

收起

展开

DOI:

10.1016/j.cllc.2015.02.002

被引量:

73

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1834)

参考文献(0)

引证文献(73)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读