Human induced pluripotent stem cell-derived neurons improve motor asymmetry in a 6-hydroxydopamine-induced rat model of Parkinson's disease.
摘要:
Since human embryonic stem cells and human fetal neural stem cells have immune rejection and ethical issues, recent advancements in induced pluripotent stem cells (iPS cells) provide new possibilities to study autologous cell therapy for Parkinson's disease (PD). We isolated human skin fibroblasts from normal individuals and patients with PD; we generated iPS cells by transfecting these human skin fibroblasts with retroviral reprogramming factors of OCT4, SOX2, KLF4 and c-MYC and induced iPS cells to differentiate neural stem cells (NSCs) and then into neurons and dopamine neurons in vitro. We found that iPS cell-derived NSC transplant into the striatum of the 6-hydroxydopamine (OHDA)-induced PD rats improved their functional defects of rotational asymmetry at 4, 8, 12 and 16 weeks after transplantation. iPS cell-derived NSCs were found to survive and integrate into the brain of transplanted PD rats and differentiated into neurons, including dopamine neurons in vivo. Transplantation of iPS cell-derived NSCs has therapeutic potential for PD. Our study provided experimental proof for future clinical application of iPS cells in cell-based treatment of PD.
收起
展开
DOI:
10.1016/j.jcyt.2015.02.001
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(639)
参考文献(0)
引证文献(31)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无