A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus.
摘要:
The dorsal and ventral hippocampi are functionally and anatomically distinct. Recently, we reported that dorsal Cornu Ammonis area 1 (CA1) neurons have a more hyperpolarized resting membrane potential and a lower input resistance and fire fewer action potentials for a given current injection than ventral CA1 neurons. Differences in the hyperpolarization-activated cyclic nucleotide-gated cation conductance between dorsal and ventral neurons have been reported, but these differences cannot fully account for the different resting properties of these neurons. Here, we show that coupling of A1 adenosine receptors (A1ARs) to G-protein-coupled inwardly rectifying potassium (GIRK) conductance contributes to the intrinsic membrane properties of dorsal CA1 neurons but not ventral CA1 neurons. The block of GIRKs with either barium or the more specific blocker Tertiapin-Q revealed that there is more resting GIRK conductance in dorsal CA1 neurons compared with ventral CA1 neurons. We found that the higher resting GIRK conductance in dorsal CA1 neurons was mediated by tonic A1AR activation. These results demonstrate that the different resting membrane properties between dorsal and ventral CA1 neurons are due, in part, to higher A1AR-mediated GIRK activity in dorsal CA1 neurons.
收起
展开
DOI:
10.1152/jn.00951.2014
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(96)
参考文献(45)
引证文献(44)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无