Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies.
摘要:
9-Bromo-noscapine (9-Br-Nos) alters tubulin polymerization in non-small cell lung cancer cells differently from noscapine. However, clinical applications of 9-Br-Nos are limited owing to poor aqueous solubility and high lipophilicity that eventually lead to suboptimal therapeutic efficacy at the site of action. Hence, 9-Br-Nos loaded nanostructured lipid particles (9-Br-Nos-NLPs) were prepared by nanoemulsion method to reduce the particle size below 100 nm. To impart the inhalable and rapid release (RR) attributes, 9-Br-Nos-NLPs were treated with spray dried lactose and effervescent excipients to generate, 9-Br-Nos-RR-NLPs. The mean particle and aerodynamic size of 9-Br-Nos-NLPs were measured to be 13.4±3.2 nm and 2.3±1.5 μm, significantly (P<0.05) lower than 19.4±6.1 nm and 3.1±1.8 μm of 9-Br-Nos-RR-NLPs. In addition, zeta-potential of 9-Br-Nos-NLPs was examined to be -9.54±0.16 mV, significantly (P<0.05) lower than -7.23±0.10 mV of 9-Br-Nos-RR-NLPs. Hence, both formulations were found to be optimum for pulmonary delivery through inhalation route of administration. Next, 9-Br-Nos-RR-NLPs exhibited enhanced cytotoxicity, apoptosis and cellular uptake in A549, lung cancer cells, as compared to 9-Br-Nos-NLPs and 9-Br-Nos suspension. This may be attributed to enhanced drug delivery and internalization character of 9-Br-Nos-RR-NLPs by energy-dependent endocytosis and passive diffusion mechanism. Pharmacokinetic and distribution analysis demonstrated the superiority of 9-Br-Nos-RR-NLPs that exhibited ∼1.12 and ∼1.75-folds enhancement in half-life of the drug as compared to 9-Br-Nos-NLPs and 9-Br-Nos powder following inhalation route. Continuation to this, 9-Br-Nos-RR-NLPs also displayed ∼3.75-fold increment in half-life of the drug in lungs, as compared to 9-Br-Nos suspension following intravenous route of administration. Furthermore, enhanced drug exposure was measured in terms of AUC(last) in lungs following administration of 9-Br-Nos-RR-NLPs, as compared to 9-Br-Nos-NLPs, 9-Br-Nos powder and 9-Br-Nos suspension. This may be attributed to rapid dispersion, enhanced dissolution and deep lung deposition of nanoparticles following inhalation route. Therefore, inhalable 9-Br-Nos-RR-NLPs claims further in depth in vivo tumor regression study to scale up the technology for clinical applications.
收起
展开
DOI:
10.1016/j.jcis.2014.12.092
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(264)
参考文献(0)
引证文献(23)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无