miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase.
摘要:
Heparanase (HPSE) is the endogenous endoglycosidase that degrades heparan sulfate proteoglycans and promotes the tumor growth, invasion, metastasis and angiogenesis. Our previous studies have shown that HPSE is highly expressed in neuroblastoma (NB), the most common extracranial solid tumor in childhood. However, the underlying regulatory mechanisms remain largely unknown. In this study, we identified one binding site of microRNA-558 (miR-558) within the HPSE promoter. In NB tissues and cell lines, miR-558 was up-regulated and positively correlated with HPSE expression. Gain- and loss-of-function studies demonstrated that miR-558 facilitated the transcript and protein levels of HPSE and its downstream gene, vascular endothelial growth factor, in NB cell lines. In addition, miR-558 enhanced the promoter activities of HPSE, and these effects were abolished by the mutation of the miR-558-binding site. Mechanistically, miR-558 induced the enrichment of the active epigenetic marker and RNA polymerase II on the HPSE promoter in NB cells in an Argonaute 1-dependent manner, which was abolished by repressing the miR-558-promoter interaction. Knockdown of endogenous miR-558 decreased the growth, invasion, metastasis and angiogenesis of NB cells in vitro and in vivo. In contrast, over-expression of miR-558 promoted the growth, invasion, metastasis and angiogenesis of SH-SY5Y and SK-N-SH cells. Restoration of HPSE expression prevented the NB cells from changes in these biological features induced by knockdown or over-expression of miR-558. These data indicate that miR-558 induces the transcriptional activation of HPSE via the binding site within promoter, thus facilitating the tumorigenesis and aggressiveness of NB.
收起
展开
DOI:
10.1093/hmg/ddv018
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(244)
参考文献(0)
引证文献(56)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无