Immunohistochemical characterization of renal tumors in patients with Birt-Hogg-Dubé syndrome.

来自 PUBMED

作者:

Iribe YKuroda NNagashima YYao MTanaka RGotoda HKawakami FImamura YNakamura YAndo MAraki AMatsushima JNakatani YFuruya M

展开

摘要:

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder associated with a germline mutation of folliculin (FLCN). The affected families are at a high risk for developing multiple renal cell carcinomas (RCC). Little is known about the immunostaining patterns of mutant FLCN-associated RCCs. We investigated 32 RCCs obtained from 17 BHD patients. The studied tumors included chromophobe RCCs (n = 15), hybrid oncocytic/chromophobe tumors (HOCT) (n = 14) and clear cell RCCs (n = 3). Almost all chromophobe RCCs and HOCTs revealed positive staining for S100A1, Ksp-cadherin and CD82. They stained either focally or diffusely for CK7, and were negative for CA-IX. All clear cell RCCs were positively stained for CA-IX and negative for CK7. These data confirmed that mutant FLCN-associated oncocytic and clear cell RCCs exhibited generally similar immunostaining patterns compared to their sporadic counterparts. Frequent positive staining for S100A1, Ksp-cadherin and CD82 in chromophobe RCCs and HOCTs indicated that these two types were relatively similar rather than distinctively different in their patterns of immunoreactivity. Characteristic peri-nuclear halos and polygonal cells with clear cytoplasm, which often misleads pathologists into the diagnosis of clear cell RCC, should be carefully examined using an immunohistochemical panel including CA-IX, Ksp-cadherin, CD82 and CK7.

收起

展开

DOI:

10.1111/pin.12254

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(337)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读