Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage.

来自 PUBMED

作者:

Lee YSThouas GAGardner DK

展开

摘要:

What is the relationship between cleavage stage embryo kinetics, blastocyst metabolism and subsequent embryo viability? Embryos cleaving faster at the first cleavage division resulted in blastocysts with a larger inner cell mass (ICM), higher glucose consumption, lower glycolytic rate, higher aspartate uptake, lower global amino acid turnover and higher percentage of developing fetuses on E13.5 when compared with blastocysts that developed from slower cleaving embryos. Previous research has shown that morphokinetics, blastocyst carbohydrate metabolism and cleavage stage amino acid metabolism of the preimplantation embryo can be used independently as markers of its developmental competence and subsequent viability. Morphokinetics of in vitro fertilized mouse zygotes were observed using a time-lapse imaging system and they were identified as 'fast' or 'slow' cleaving embryos. Spent culture media from resultant blastocysts were analysed for carbohydrate and amino acid utilization. Blastocysts either had their ICM and trophectoderm (TE) cell number determined, were cultured further in an outgrowth assay or transferred to a recipient female to assess implantation and fetal development. Morphokinetics of in vitro fertilized C57BL/6xCBA (F1) zygotes individually cultured in 2 µl drops of G1/G2 media with HSA under Ovoil in 5% O2, 6% CO2 and 89% N2 were analysed using a time-lapse incubator. At 72 h post-insemination, blastocysts were separated into quartiles derived from timing of the first cleavage division. Blastocysts were cultured for a further 24 h and spent media samples, including controls containing no embryos, were frozen and subsequently analysed for amino acid utilization using liquid chromatography-mass spectrometry. These blastocysts were then analysed over a further 1.5 h period for carbohydrate utilization and subsequently stained to determine ICM and TE cells. To analyse implantation potential, fetal quality and viability, additional 'fast' and 'slow' blastocysts were cultured further in an outgrowth model or transferred to recipient females. Embryos cleaving faster at the time of first cleavage (first quartile, designated 'fast') were on average 2.5 h ahead of slower embryos (fourth quartile, designated 'slow', 15.1 ± 0.1 versus 17.6 ± 0.1 h, P < 0.001). On Day 5 of culture, blastocysts developed from 'fast' embryos had a larger ICM number (17.4 ± 2.1 versus 7.4 ± 2.0, P < 0.01), a higher glucose consumption (21.2 ± 1.2 versus 14.3 ± 1.0 pmol/embryo/h, P < 0.001) and a lower glycolytic rate (expressed as the percentage of glucose converted to lactate) (49.6 ± 2.8 versus 59.7 ± 2.8%, P < 0.05) compared with 'slow' embryos. Further non-invasive metabolomic analysis revealed that 'fast' blastocysts consumed more aspartate (2.2 ± 0.1 versus 1.8 ± 0.1 pmol/embryo/h, P < 0.05) and produced little or no glutamate compared with 'slow' blastocysts (0.02 ± 0.07 consumed versus 0.32 ± 0.11 pmol/embryo/h produced, P < 0.05). Transfer of 'fast' blastocysts to pseudo-pregnant recipients resulted in higher fetal survival post-implantation compared with 'slow' blastocysts (69.6 versus 40.4%, P < 0.01). The timing of the first cleavage division was used to classify blastocysts as 'fast' or 'slow' embryos; however, a combination of several developmental kinetic markers (cleavage time of 3- to 8-cell, duration between cleavage division times) may be used to more accurately determine an embryo as 'fast' or 'slow'. Only the fastest and slowest quartiles (those embryos with the fastest and slowest first cleavage division) were analysed in this study. These findings show that kinetically different embryos develop into blastocysts with different metabolic profiles and viability. Work is now being undertaken to determine if using these viability markers in combination will increase embryo selection efficacy and further improve implantation and pregnancy rates. The study was funded by the University of Melbourne. The authors have no conflicts of interest to declare.

收起

展开

DOI:

10.1093/humrep/deu334

被引量:

27

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2774)

参考文献(0)

引证文献(27)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读