Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice.
摘要:
Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons.
收起
展开
DOI:
10.1111/ejn.12800
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(340)
参考文献(32)
引证文献(35)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无