Hypoglycemic effect of deoxynojirimycin-polysaccharide on high fat diet and streptozotocin-induced diabetic mice via regulation of hepatic glucose metabolism.

来自 PUBMED

作者:

Li YGJi DFZhong SLin TBLv ZQ

展开

摘要:

Type 2 diabetes mellitus (T2DM) is currently considered a worldwide epidemic and finding effective therapeutic strategies against this disease is highly important. A deoxynojirimycin-polysaccharide mixture (DPM) has previously been shown to exert hypoglycemic effects on alloxan- or streptozotocin (STZ)-induced diabetic mice. The purpose of the present study was to evaluate the therapeutic effects and underlying mechanism(s) of DPM on T2DM induced by high fat diet following low-dose STZ treatment in mice. After daily oral treatment of diabetic mice with DPM (150 mg/kg b.w.) for 90 d, significant decline in blood glucose, pyruvate, triglyceride (TG), aspartate transaminase (AST), alanine transaminase (ALT), creatinine (Cr), lipid peroxide (LPO) and malondialdehyde (MDA) levels as well as evident increases in high density lipoprotein (HDL-c) and hepatic glycogen concentrations were observed. In the first stage, in which DPM was administered for 60 d, blood insulin levels did not undergo significant change but a significant decrease in the HOMA-IR index was detected. By contrast, the HOMA-IR index increased significantly in T2MD controls. In the second stage, in which DPM treatment was continued for another 30 d, insulin levels significantly increased in DPM-treated mice in comparison with T2DM controls. These results indicate that insulin resistance in the pre-diabetic period and the dysfunction of pancreatic β-cells are ameliorated by DPM treatment. DPM also down-regulated protein levels of insulin receptor (IR) and gluconeogenic enzymes (pyruvate carboxylase, fructose-1, 6-bisphosphatase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in peripheral tissues (liver and/or muscle), but enhanced the expressions of insulin in pancreas, lipoprotein lipase (LPL) and glycolysis enzymes (glucokinase, phosphofructokinase, private kinase and pyruvate decarboxylase E1) in the liver. Furthermore, deoxynojirimycin (DNJ) and polysaccharide (P) were found to increase proliferation of hepatic LO-2 cells and scavenging of radicals in vitro. These results support the results of our biochemical analyses and underscore possible mechanisms underlying the protective effects of DPM on STZ-induced damage to the pancreas and the liver. Taken together, our findings suggest that DPM may be developed as an antihyperglycemic agent for the treatment of diabetes mellitus.

收起

展开

DOI:

10.1016/j.cbi.2014.11.003

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1138)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读