-
Concentrations of phthalate metabolites in breast milk in Korea: estimating exposure to phthalates and potential risks among breast-fed infants.
Phthalates have been associated with endocrine disruption and developmental effects in many experimental and epidemiological studies. Developing infants are among the most susceptible populations to endocrine disruption. However, limited information is available on phthalate exposure and its associated risks among breast-fed newborn infants. In the present study, breast milk samples were collected from 62 lactating mothers at 1 month post-partum from four cities of Korea in 2012 and were evaluated for six phthalate metabolites (mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono(2-ethyl-hexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) and monoethyl phthalate (MEP)). MEP was detected in all breast milk samples, with a median concentration of 0.37 μg/L, and MiBP, MnBP and MEHP were detected in 79-89% of samples, with median concentrations of 1.10, 1.70, and 2.08 μg/L, respectively. However, MEHHP and MEOHP, the oxidized forms of di-ethyl-hexyl phthalate (DEHP), were detected in only one sample. For exposure assessment, the levels of phthalate diesters were estimated based on the parent:metabolite ratios in the breast milk that are reported elsewhere. For risk assessment, the endocrine-related toxicity of the monoester was assumed to be the same as that of its diester form. Median daily intake estimates of phthalates, including both monoester and diester forms, through breast milk consumption ranged between 0.91 and 6.52 μg/kg body weight (bw) for DEHP and between 0.38 and 1.43 μg/kg bw for di-n-butyl phthalate (DnBP). Based on the estimated daily intake, up to 8% of infants exceeded the reference dose of anti-androgenicity (RfD AA) for DEHP, and 6% of infants exceeded the tolerable daily intake (TDI) for DnBP. Breast milk MiBP and MnBP concentrations showed significant positive associations with maternal consumption of whipped cream or purified water. Considering vulnerability of young infants, efforts to mitigate phthalate exposure among lactating women are warranted.
Kim S
,Lee J
,Park J
,Kim HJ
,Cho G
,Kim GH
,Eun SH
,Lee JJ
,Choi G
,Suh E
,Choi S
,Kim S
,Kim YD
,Kim SK
,Kim SY
,Kim S
,Eom S
,Moon HB
,Kim S
,Choi K
... -
《-》
-
Phthalates and their metabolites in breast milk--results from the Bavarian Monitoring of Breast Milk (BAMBI).
Phthalates have long been used as plasticizers to soften plastic products and, thus, are ubiquitous in modern life. As part of the Bavarian Monitoring of Breast Milk (BAMBI), we aimed to characterize the exposure of infants to phthalates in Germany. Overall, 15 phthalates, including di-2-ethylhexyl phthalate (DEHP), di-n-butyl phthalate (DnBP), di-isobutyl phthalate (DiBP), di-isononyl phthalate (DiNP), three primary metabolites of DEHP [mono-(2-ethylhexyl) phthalate (MEHP), mono-isobutyl phthalate (MiBP), and mono-n-butyl phthalate (MnBP)], and two secondary metabolites of DEHP were analyzed in 78 breast milk samples. We found median concentrations of 3.9 ng/g for DEHP, 0.8 ng/g for DnBP, and 1.2 ng/g for DiBP, while other parent phthalates were found in only some or none of the samples at levels above the limit of quantitation. In infant formula (n=4) we observed mean values of 19.7 ng/g (DEHP), 3.8 ng/g (DnBP), and 3.6 ng/g (DiBP). For MEHP, MiBP, and MnBP, the median values in breast milk were 2.3 μg/l, 11.8 μg/l, and 2.1 μg/l, respectively. The secondary metabolites were not detected in any samples. Using median and 95th percentile values, we estimated an "average" and "high" daily intake for an exclusively breast-fed infant of 0.6 μg/kg body weight (b.w.) and 2.1 μg/kg b.w., respectively, for DEHP, 0.1 μg/kg b.w. and 0.5 μg/kg b.w. for DnBP, and 0.2 μg/kg b.w. and 0.7 μg/kg b.w. for DiBP. For DiNP, intake values were 3.2 μg/kg b.w. and 6.4 μg/kg b.w., respectively, if all values in milk were set half of the detection limit or the detection limit. The above-mentioned "average" and "high" intake values corresponded to only about 2% to 7%, respectively, of the recommended tolerable daily intake. Thus, it is not likely that an infant's exposure to phthalates from breast milk poses any significant health risk. Nevertheless, other sources of phthalates in this vulnerable phase have to be considered. Moreover, it should be noted that for infants nourished with formula, phthalate intake is of the same magnitude or slightly higher (DEHP) than for exclusively breast-fed infants.
Fromme H
,Gruber L
,Seckin E
,Raab U
,Zimmermann S
,Kiranoglu M
,Schlummer M
,Schwegler U
,Smolic S
,Völkel W
,HBMnet
... -
《-》
-
Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007-2009).
Human exposure to phthalates occurs through multiple sources and pathways. In the Canadian Health Measures Survey 2007-2009, 11 phthalate metabolites, namely, MMP, MEP, MnBP, MBzP, MCHP, MCPP, MEHP, MEOHP, MEHHP, MnOP, and MiNP were measured in urine samples of 6-49 year old survey respondents (n=3236). The phthalate metabolites biomonitoring data from this nationally-representative Canadian survey are presented here. The metabolites MEP, MnBP, MBzP, MCPP, MEHP, MEOHP and MEHHP were detected in >90% of Canadians while MMP, MCHP, MnOP and MiNP were detected in <20% of the Canadian population. Step-wise regression analyses were carried out to identify important predictors of volumetric concentrations (μg/L) of the metabolites in the general population. Individual multiple regression models with covariates age, sex, creatinine, fasting status, and the interaction terms age×creatinine, age×sex and fasting status×creatinine were constructed for MEP, MnBP, MBzP, MCPP, MEHP, MEOHP and MEHHP. The least square geometric mean (LSGM) estimates for volumetric concentration (μg/L) of the metabolites derived from respective regression models were used to assess the patterns in the metabolite concentrations among population sub-groups. The results indicate that children had significantly higher urinary concentrations of MnBP, MBzP, MEHP, MEHHP, MEOHP and MCPP than adolescents and adults. Moreover, MEP, MBzP, MnBP and MEOHP concentrations in females were significantly higher than in males. We observed that fasting status significantly affects the concentrations of MEHP, MEHHP, MEOHP, and MCPP metabolites analyzed in this study. Moreover, our results indicate that the sampling time could affect the DEHP metabolite concentrations in the general Canadian population.
Saravanabhavan G
,Guay M
,Langlois É
,Giroux S
,Murray J
,Haines D
... -
《-》
-
Phthalate metabolites in obese individuals undergoing weight loss: Urinary levels and estimation of the phthalates daily intake.
Human exposure to chemicals commonly encountered in our environment, like phthalates, is routinely assessed through urinary measurement of their metabolites. A particular attention is given to the specific population groups, such as obese, for which the dietary intake of environmental chemicals is higher. To evaluate the exposure to phthalates, nine phthalate metabolites (PMs) were analyzed in urine collected from obese individuals and a control population. Obese individuals lost weight through either bariatric surgery or a conservative weight loss program with dietary and lifestyle counseling. Urine samples were also collected from the obese individuals after 3, 6 and 12months of weight loss. Individual daily intakes of the corresponding phthalate diesters were estimated based on the urinary PM concentrations. A high variability was recorded for the levels of each PM in both obese and control urine samples showing the exposure to high levels of PMs in specific subgroups. The most important PM metabolite as percentage contribution to the total PM levels was mono-ethyl phthalate followed by the metabolites of di-butyl phthalate and di 2-ethyl-hexyl phthalate (DEHP). No differences in the PM levels and profiles between obese entering the program and controls were observed. Although paralleled by a significant decrease of their weight, an increase in the urinary PM levels after 3 to 6months loss was seen. Constant figures for the estimated phthalates daily intake were observed over the studied period, suggesting that besides food consumption, other human exposure sources to phthalates (e.g. air, dust) might be also important. The weight loss treatment method followed by obese individuals influenced the correlations between PM levels, suggesting a change of the intake sources with time. Except for few gender differences recorded between the urinary DEHP metabolites correlations, no other differences were observed for the urinary PM levels as a function of age, body mass index or waist circumference. Linear regression analysis showed almost no significance of the relationship between measured urinary PMs and serum free thyroxine, thyroid-stimulating hormone (TSH) for all obese individuals participating to the study, while for the control samples, several PMs were significantly associated with the serum TSH levels.
Dirtu AC
,Geens T
,Dirinck E
,Malarvannan G
,Neels H
,Van Gaal L
,Jorens PG
,Covaci A
... -
《-》
-
Trends of the internal phthalate exposure of young adults in Germany--follow-up of a retrospective human biomonitoring study.
The exposure of the general population to phthalates is of increasing public health concern. Variations in the internal exposure of the population are likely, because the amounts, distribution and application characters of the phthalate use change over time. Estimating the chronological sequences of the phthalate exposure, we performed a retrospective human biomonitoring study by investigating the metabolites of the five most prominent phthalates in urine. Therefore, 24h-urine samples from the German Environmental Specimen Bank (ESB) collected from 240 subjects (predominantly students, age range 19-29 years, 120 females, 120 males) in the years 2002, 2004, 2006 and 2008 (60 individuals each), were analysed for the concentrations of mono-n-butyl phthalate (MnBP) as metabolite of di-n-butyl phthalate (DnBP), mono-iso-butyl phthalate (MiBP) as metabolite of di-iso-butyl phthalate (DiBP), mono-benzyl phthalate (MBzP) as metabolite of butylbenzyl phthalate (BBzP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP), mono-(2-ethyl-5-carboxypentyl) phthalate (5cx-MEPP) and mono-(2-carboxymethyl hexyl) phthalate (2cx-MMHxP) as metabolites of di(2-ethylhexyl) phthalate (DEHP), monohydroxylated (OH-MiNP), monooxidated (oxo-MiNP) and monocarboxylated (cx-MiNP) mono-iso-nonylphthalates as metabolites of di-iso-nonyl phthalates (DiNP). Based on the urinary metabolite excretion, together with results of a previous study, which covered the years 1988-2003, we investigated the chronological sequences of the phthalate exposure over two decades. In more than 98% of the urine samples metabolites of all five phthalates were detectable indicating a ubiquitous exposure of people living in Germany to all five phthalates throughout the period investigated. The medians in samples from the different years investigated are 65.4 (2002), 38.5 (2004), 29.3 (2006) and 19.6 μg/l (2008) for MnBP, 31.4 (2002), 25.4 (2004), 31.8 (2006) and 25.5 μg/l (2008) for MiBP, 7.8 (2002), 6.3 (2004), 3.6 (2006) and 3.8 μg/l (2008) for MBzP, 7.0 (2002), 5.6 (2004), 4.1 (2006) and 3.3 μg/l (2008) for MEHP, 19.6 (2002), 16.2 (2004), 13.2 (2006) and 9.6 μg/l (2008) for 5OH-MEHP, 13.9 (2002), 11.8 (2004), 8.3 (2006) and 6.4 μg/l (2008) for 5oxo-MEHP, 18.7 (2002), 16.5 (2004), 13.8 (2006) and 10.2 μg/l (2008) for 5cx-MEPP, 7.2 (2002), 6.5 (2004), 5.1 (2006) and 4.6 μg/l (2008) for 2cx-MMHxP, 3.3 (2002), 2.8 (2004), 3.5 (2006) and 3.6 μg/l (2008) for OH-MiNP, 2.1 (2002), 2.1 (2004), 2.2 (2006) and 2.3 μg/l (2008) for oxo-MiNP and 4.1 (2002), 3.2 (2004), 4.1 (2006) and 3.6 μg/l (2008) for cx-MiNP. The investigation of the time series 1988-2008 indicates a decrease of the internal exposure to DnBP by the factor of 7-8 and to DEHP and BzBP by the factor of 2-3. In contrast, an increase of the internal exposure by the factor of 4 was observed for DiNP over the study period. The exposure to DiBP was found to be stable. In summary, we found decreases of the internal human exposure for legally restricted phthalates whereas the exposure to their substitutes increased. Future investigations should verify these trends. This is of increasing importance since the European Commission decided to require ban or authorization from 1.1.2015 for DEHP, DnBP, DiBP and BzBP according to REACh Annex XIV.
Göen T
,Dobler L
,Koschorreck J
,Müller J
,Wiesmüller GA
,Drexler H
,Kolossa-Gehring M
... -
《-》