TCRklass: a new K-string-based algorithm for human and mouse TCR repertoire characterization.
摘要:
The next-generation sequencing technology has promoted the study on human TCR repertoire, which is essential for the adaptive immunity. To decipher the complexity of TCR repertoire, we developed an integrated pipeline, TCRklass, using K-string-based algorithm that has significantly improved the accuracy and performance over existing tools. We tested TCRklass using manually curated short read datasets in comparison with in silico datasets; it showed higher precision and recall rates on CDR3 identification. We applied TCRklass on large datasets of two human and three mouse TCR repertoires; it demonstrated higher reliability on CDR3 identification and much less biased V/J profiling, which are the two components contributing the diversity of the repertoire. Because of the sequencing cost, short paired-end reads generated by next-generation sequencing technology are and will remain the main source of data, and we believe that the TCRklass is a useful and reliable toolkit for TCR repertoire analysis.
收起
展开
DOI:
10.4049/jimmunol.1400711
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(133)
参考文献(0)
引证文献(18)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无