Anti-inflammatory effects of Brucea javanica oil emulsion by suppressing NF-κB activation on dextran sulfate sodium-induced ulcerative colitis in mice.
Brucea javanica is an important traditional medicinal herb used for the treatment of dysentery, malaria, inflammation and cancer in southeast Asia for many years. However, the anti-inflammatory mechanism of Brucea javanica in the treatment of dysentery (also known as ulcerative colitis, UC) has not been fully illuminated. Brucea javanica oil emulsion (BJOE) is the major active and most common application form of Brucea javanica oil (BJO), which has a variety of pharmacological activities. The aim of this study was to investigate the potential anti-inflammatory effect of BJOE and possible mechanism of action on dextran sulfate sodium (DSS)-induced UC in mice.
The components of BJOE were determined by gas chromatography-mass spectrometry (GC-MS). Balb/C mice with dextran sulfate sodium (DSS, 30mg/mL) induced colitis were treated with BJOE (0.5, 1 and 2g/kg) and two positive drugs (sulfasalazine, SASP, 200mg/kg; and azathioprine, AZA, 13mg/kg) once daily by gavage for 7 days. Mice in normal control group and DSS group were orally given the same volume of distilled water and soybean lecithin suspension (0.15g/kg) respectively. The effects of BJOE on DSS-induced UC were assessed by determination of body weight loss, disease activity index (DAI), colon length, histological analysis, as well as levels of pro-inflammatory cytokines. The mRNA expression of MPO, iNOS and COX-2 in colon tissues was detected by qRT-PCR. In addition, NF-κB p65, p-p65 and IκB-α, p-IκBα protein expression levels in colon tissues were investigated using Western blotting.
The major components of BJOE were found to be oleic acid (62.68%) and linoleic acid (19.53%) as detected by GC-MS. Our results indicated that BJOE, SASP and AZA showed beneficial effect on DSS-induced colitis in mice, and significantly reduced the body weight loss and DAI, restored the colon length, repaired colonic pathological variations, decreased histological scores, and decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-17 and IFN-γ) as compared with the DSS group. In addition, the mRNA expression of MPO, iNOS and COX-2 induced by DSS treatment was remarkably inhibited by BJOE, SASP or AZA treatments. Furthermore, when compared with DSS-treated mice, the activation of NF-κB was significantly inhibited by AZA and BJOE treatment.
Our study shows that BJOE possessed appreciable anti-inflammatory effect against murine experimental UC induced by DSS. The protective mechanism of BJOE may involve inhibition of NF-κB signal transduction pathways and subsequent down-regulation of inflammatory mediators. These findings suggest that BJOE might be an efficacious and promising therapeutic approach for the treatment of UC. Our investigation might also provide experimental evidence for the traditional application of Brucea javanica in the treatment of dysentery and might add new dimension to the clinical indications for BJOE.
Huang YF
,Zhou JT
,Qu C
,Dou YX
,Huang QH
,Lin ZX
,Xian YF
,Xie JH
,Xie YL
,Lai XP
,Su ZR
... -
《-》
Intestinal anti-inflammatory effects of fuzi-ganjiang herb pair against DSS-induced ulcerative colitis in mice.
Fuzi and ganjiang are widely used as traditional Chinese medicines (TCM) in China, Korea, Japan, and many other southeast Asian countries for treating ulcerative colitis (UC), emesis and heart failure for more than 1800 years. However, the underlying mechanism of fuzi, ganjiang and fuzi-ganjiang herb pair is still unclear. In our study, we explored the therapeutic effects of fuzi, ganjiang and fuzi-ganjiang herb pair against dextran sulfate sodium (DSS)-induced UC in mice model, along with the relevant mechanism.
The contents of each marker compound in fuzi decoction (FD), ganjiang decoction (GD) and fuzi-ganjiang decoction (FGD) were determined using LC-MS/MS. During the experiment, bodyweight changes in each group were monitored every 5 days. On the day of sacrifice, colonic length, disease activity index (DAI) and spleen weight were also evaluated and histopathological examination was performed through hematoxylin & eosin (H&E) staining. The levels of myeloperoxidase (MPO) and inflammatory cytokines in colon tissues were determined by enzyme-linked immunosorbent assay (ELISA), and then the relative mRNA productions of inflammatory mediators, such as MPO, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were measured by real-time polymerase chain reaction (PCR). Involvement of MAPK, STAT3 and NF-κB signaling pathways in the pathogenesis of UC was determined in each group using Western Blot (WB) analysis.
Compared with fuzi and ganjiang single decoction, the content of the alkaloids derived from fuzi (especially the diester alkaloid with strong toxicity, hypaconitine) in fuzi-ganjiang herb pair decoction was reduced. Additionally, the 6-gingerol, which was not found in ganjiang single decoction, was retained in fuzi-ganjiang herb pair decoction. FD, GD, and FGD significantly restored the bodyweight reduction, colon shortening, DAI elevation, splenomegaly and histological score in DSS-induced UC mice. Furthermore, except for the failure of low dosage of ganjiang decoction (GD-L) on IL-17A, all FD, GD and FGD significantly inhibited the production of MPO and inflammatory cytokines, such as IFN-γ, TNF-α, IL-1β, IL-6, IL-10 and IL-17A, and suppressed the relative expression of inflammatory mediators, such as MPO, iNOS and COX-2 mRNA in colon tissues of DSS-induced mice. According to WB analysis, fuzi, ganjiang and fuzi-ganjiang combination inhibited the activation of MAPK, NF-κB and STAT3 signaling pathways.
Our study demonstrated that fuzi, ganjiang and fuzi-ganjiang combination possess prominent anti-inflammatory activities against DSS-induced UC mice; the involved mechanism may be related to inhibition the activation of MAPK, NF-κB, and STAT3 signaling pathways.
Huang C
,Dong J
,Jin X
,Ma H
,Zhang D
,Wang F
,Cheng L
,Feng Y
,Xiong X
,Jiang J
,Hu L
,Lei M
,Wu B
,Zhang G
... -
《-》