Antimetastatic effects of Celastrus orbiculatus on human gastric adenocarcinoma by inhibiting epithelial-mesenchymal transition and NF-κB/snail signaling pathway.
Celastrus orbiculatus has been used as a folk medicine in China for the treatment of many diseases. In the laboratory, the ethyl acetate extract of Celastrus orbiculatus (COE) displays a wide range of anticancer functions. However, the inhibition of the metastasis mechanism of COE in gastric cancer cells has not been investigated so far. The present study was undertaken to determine if the antimetastatic effects of COE were involved in inhibition of the epithelial-mesenchymal transition (EMT) of human gastric adenocarcinoma SGC-7901 cells.
The adhesion, invasion, and migration of SGC-7901 cells were determined by COE treatment in vitro, using Matrigel-coated plate, transwell membrane chamber, and wound healing models, respectively. In vivo, the growth-inhibiting and antimetastatic effects of COE on the nude mice model of gastric cancer were tested and the mechanisms were explored. The expression of EMT markers and nuclear factor κB (NF-κB)/Snail signaling pathway were evaluated by using western blotting and immunohistochemistry.
Treatment with COE dose-dependently inhibited the proliferation, adhesion, invasion, and migration of SGC-7901 cells in vitro, which was realized by enhancing the expression of E-cadherin and reducing N-cadherin and vimentin expression. Moreover, COE suppressed the activation of NF-κB/Snail signaling pathway induced by tumor necrosis factor-α. In addition, COE effectively suppressed tumor growth and metastasis in the nude mice model due to reduced expression of N-cadherin, vimentin, NF-κB p65, and Snail and increased expression of E-cadherin in the tumor tissues.
Our findings provided new evidence that COE is an effective inhibitor of metastatic potential of SGC-7901 cells through suppression of EMT and NF-κB/Snail signal pathway. Based on these findings, COE may be considered a novel anticancer agent for the treatment of metastasis in gastric cancer.
Zhu Y
,Liu Y
,Qian Y
,Dai X
,Yang L
,Chen J
,Guo S
,Hisamitsu T
... -
《-》
Farrerol suppresses epithelial-mesenchymal transition in hepatocellular carcinoma via suppression of TGF-β1/Smad2/3 signaling.
Epithelial-mesenchymal transition (EMT) is an essential process for the metastasis of multiple malignancies, including hepatocellular carcinoma (HCC). Farrerol is a plant-derived flavonoid and has significant pharmacological effects. However, the anticancer activities of farrerol have not been fully elucidated. Here, we investigated the effects of farrerol on HCC progression.
The potential of farrerol to prevent HCC cell migration and invasiveness was evaluated by wound healing and transwll matrix assays. Immunoblotting, immunofluorescence, and qPCR were used to detect the levels of EMT-related proteins. Transforming growth factor beta (TGF-β) (10 ng/ml) was used to stimulate HCC cells, followed by measurement of cell migration, invasiveness, and the EMT. TGF-β1/Smads signaling was examined by immunoblotting. A xenograft mouse model was used to assess the anticancer efficacy of farrerol in vivo. The expression levels of EMT- and angiogenesis-related proteins in xenograft tumors were evaluated by immunoblotting or immunohistochemistry.
We found that farrerol blocked HCC cell migration and invasiveness. Farrerol upregulated E-cadherin levels and reduced N-cadherin and vimentin levels. Farrerol also downreuglated the expression levels of EMT-related transcription factors including slug, snail, twist, and zeb1. Furthermore, farrerol suppressed TGF-β-stimulated migration, invasiveness, and the EMT in HCC cells. The phosphorylation of Smad 2/3 induced by TGF-β was inhibited by farrerol. Importantly, farrerol suppressed HCC growth and the EMT in vivo. Farrerol also inhibited tumor angiogenesis by inhibiting hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in vivo.
Overall, farrerol suppresss HCC by inhibiting migration, invasiveness, the EMT, and angiogenesis, implying that farrerol could be a promising antimetastasis agent for HCC.
Hao Y
,Long Z
,Gu X
《-》
Jia Wei Qingxin Lotus Seed Drink ameliorates epithelial mesenchymal transition injury in diabetic kidney disease via inhibition of JMJD1C/SP1/ZEB1 signaling pathway.
Diabetic kidney disease (DKD) is one of the most common microvascular complications in patients with diabetes mellitus. In this condition, renal tubular epithelial mesenchymal transition (EMT) is an important factor accelerating the progression of DKD and a major cause of renal fibrosis and end-stage renal disease. However, the therapeutic effect is unsatisfactory because of the lack of effective drugs. Jia Wei Qingxin Lotus Seed Drink (QISD) is a traditional Chinese medicine compound formula that has shown to be effective in the clinical treatment of DKD. However, the potential of QISD in DKD-EMT treatment has yet to be fully explored.
This study aimed to investigate the role of QISD in ameliorating DKD-EMT injury and its mechanism.
The active ingredients of QISD were identified via ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS). A DKD mouse model was constructed by high-fat diet feeding and intraperitoneal injection of STZ (60 mg/kg), and QISD (14.46, 28.92, and 57.84 g/kg/day) was administered by gavage for 12 consecutive weeks. Dapagliflozin (1 mg/kg/d) was used as a positive control. Renal pathological damage was observed by HE, PAS, and Masson staining. The expression levels of EMT-related proteins and pathway proteins were detected via immunohistochemistry, RT-qPCR, and western blot. In in vitro experiments, EMT injury was induced in human kidney tubular epithelial cells (HK-2) by using lipopolysaccharide (LPS). A combination of CCK8 assay, wound healing assay, small-molecule inhibitor intervention, and overexpression lentiviral transfection was used to investigate the effects of QISD on cell migration ability, adhesion ability, fibrotic factor formation, and mesenchymal properties.
Animal experiments showed that QISD improved blood glucose, body weight, symptoms of excessive drinking and eating, and renal pathological injury in mice, reduced extracellular matrix deposition, delayed renal EMT injury, and inhibited the activation of the histone demethylase JMJD1C. UHPLC-MS/MS and molecular docking indicated that baicalin, wogonoside, oroxylin A-7-O-β-D-glucuronide, and glulisine A found in QISD could bind to JMJD1C. The ameliorating effect of QISD on DKD-EMT injury might be related to JMJD1C. The improvement of DKD-EMT injury by QISD was accompanied by the reduction of SP1 and ZEB1 expression. The SP1 overexpression not only reversed the therapeutic effect of JIB-04, an inhibitor of JMJD1C, on DKD-EMT but also exacerbated the expression of ZEB1 and downstream EMT-related factors. Thus, QISD might affect the expression of the epithelial marker E-cadherin by inhibiting the JMJD1C/SP1/ZEB1 signaling pathway, consequently preventing the transformation of epithelial cells to mesenchymal cells and ameliorating DKD-EMT injury.
This study was the first to demonstrate that QISD might ameliorate DKD-EMT injury by inhibiting the JMJD1C/SP1/ZEB1 signaling pathway. These findings provide strong pharmacologic evidence for the clinical use of QISD in the treatment of DKD.
Xie J
,Lin H
,Jin F
,Luo Y
,Yang P
,Song J
,Yao W
,Lin W
,Yuan D
,Zuo A
,Sun J
,Wang M
... -
《-》