Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation.
摘要:
Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin along muscle fibers. An attractive therapeutic avenue for DMD consists in the upregulation of utrophin A, a protein with high sequence identity and functional redundancy with dystrophin. Recent work has shown that pharmacological interventions that induce a muscle fiber shift toward a slower, more oxidative phenotype with increased expression of utrophin A confer morphological and functional improvements in mdx mice. Whether such improvements result from the increased expression of utrophin A per se or are linked to other beneficial adaptations associated with the slow, oxidative phenotype remain to be established. To address this central issue, we capitalized on the use of double knockout (dKO) mice, which are mdx mice also deficient in utrophin. We first compared expression of signaling molecules and markers of the slow, oxidative phenotype in muscles of mdx versus dKO mice and found that both strains exhibit similar phenotypes. Chronic activation of 5' adenosine monophosphate-activated protein kinase with 5-amino-4-imidazolecarboxamide riboside (AICAR) resulted in expression of a slower, more oxidative phenotype in both mdx and dKO mice. In mdx mice, this fiber type shift was accompanied by clear functional improvements that included reductions in central nucleation, IgM sarcoplasmic penetration and sarcolemmal damage resulting from eccentric contractions, as well as in increased grip strength. These important morphological and functional adaptations were not seen in AICAR-treated dKO mice. Our findings show the central role of utrophin A in mediating the functional benefits associated with expression of a slower, more oxidative phenotype in dystrophic animals.
收起
展开
DOI:
10.1093/hmg/ddu535
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(152)
参考文献(0)
引证文献(22)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无