The medial pterygoid tubercle in the Atapuerca Early and Middle Pleistocene mandibles: evolutionary implications.
Numerous studies have attempted to identify the presence of uniquely derived (autoapomorphic) Neandertal features. Here, we deal with the medial pterygoid tubercle (MTP), which is usually present on the internal face of the ascending ramus of Neandertal specimens. Our study stems from the identification of a hypertrophied tubercle in ATD6-96, an Early Pleistocene mandible recovered from the TD6 level of the Atapuerca-Gran Dolina site and attributed to Homo antecessor. Our review of the literature and study of numerous original fossil specimens and high quality replicas confirm that the MTP occurs at a high frequency in Neandertals (ca. 89%) and is also present in over half (ca. 55%) of the Middle Pleistocene Sima de los Huesos (SH) hominins. In contrast, it is generally absent or minimally developed in other extinct hominins, but can be found in variable frequencies (<ca. 25%) in Pleistocene and recent H. sapiens samples. The presence of this feature in ATD6-96 joins other traits shared by H. antecessor, the SH hominins and Neandertals. Since the TD6 hominins have been attributed either to MIS 21 or to MIS 25, it seems that a suite of assumed derived Neandertal features appeared in the Early Pleistocene, and they should be interpreted as synapomorphies shared among different taxa. We suggest that H. antecessor, the SH hominins and Neandertals shared a common ancestor in which these features appeared during the Early Pleistocene. The presence of the MTP in taxa other than H. neanderthalensis precludes this feature from being a Neandertal autapomorphy.
Bermúdez de Castro JM
,Quam R
,Martinón-Torres M
,Martínez I
,Gracia-Téllez A
,Arsuaga JL
,Carbonell E
... -
《-》
The Neandertal nature of the Atapuerca Sima de los Huesos mandibles.
The recovery of additional mandibular fossils from the Atapuerca Sima de los Huesos (SH) site provides new insights into the evolutionary significance of this sample. In particular, morphological descriptions of the new adult specimens are provided, along with standardized metric data and phylogenetically relevant morphological features for the expanded adult sample. The new and more complete specimens extend the known range of variation in the Atapuerca (SH) mandibles in some metric and morphological details. In other aspects, the addition of new specimens has made it possible to confirm previous observations based on more limited evidence. Pairwise comparisons of individual metric variables revealed the only significant difference between the Atapuerca (SH) hominins and Neandertals was a more vertical symphysis in the latter. Similarly, principal components analysis of size-adjusted variables showed a strong similarity between the Atapuerca (SH) hominins and Neandertals. Morphologically, the Atapuerca (SH) mandibles show nearly the full complement of Neandertal-derived features. Nevertheless, the Neandertals differ from the Atapuerca (SH) mandibles in showing a high frequency of the H/O mandibular foramen, a truncated, thinned and inverted gonial margin, a high placement of the mylohyoid line at the level of the M3, a more vertical symphysis and somewhat more pronounced expression of the chin structures. Size-related morphological variation in the SH hominins includes larger retromolar spaces, more posterior placement of the lateral corpus structures, and stronger markings associated with the muscles of mastication in larger specimens. However, phylogenetically relevant features in the SH sample are fairly stable and do not vary with the overall size of the mandible. Direct comparison of the enlarged mandibular sample from Atapuerca (SH) with the Mauer mandible, the type specimen of H. heidelbergensis, reveals important differences from the SH hominins, and there is no morphological counterpart of Mauer within the SH sample, suggesting the SH fossils should not be assigned to this taxon. The Atapuerca (SH) mandibles show a greater number of derived Neandertal features, particularly those related to midfacial prognathism and in the configuration of the superior ramus, than other European middle Pleistocene specimens. This suggests that more than one evolutionary lineage co-existed in the middle Pleistocene, and, broadly speaking, it appears possible to separate the European middle Pleistocene mandibular remains into two distinct groupings. One group shows a suite of derived Neandertal features and includes specimens from the sites of Atapuerca (SH), Payre, l'Aubesier and Ehringsdorf. The other group includes specimens that generally lack derived Neandertal features and includes the mandibles from the sites of Mauer, Mala Balanica, Montmaurin and (probably) Visogliano. The two published Arago mandibles differ strongly from one another, with Arago 2 probably belonging to this former group, and Neandertal affinities being more difficult to identify in Arago 13. Outside of the SH sample, derived Neandertal features in the mandible only become more common during the second half of the middle Pleistocene. Acceptance of a cladogenetic pattern of evolution during the European middle Pleistocene has the potential to reconcile the predictions of the accretion model and the two phases model for the appearance of Neandertal morphology. The precise taxonomic classification of the SH hominins must contemplate features from the dentition, cranium, mandible and postcranial skeleton, all of which are preserved at the SH site. Nevertheless, the origin of the Neandertal clade may be tied to a speciation event reflected in the appearance of a suite of derived Neandertal features in the face, dentition and mandible, all of which are present in the Atapuerca (SH) hominins. This same suite of features also provides a useful anatomical basis to include other European middle Pleistocene mandibles and crania within the Neandertal clade.
Quam R
,Martínez I
,Rak Y
,Hylander B
,Pantoja A
,Lorenzo C
,Conde-Valverde M
,Keeling B
,Ortega Martínez MC
,Arsuaga JL
... -
《-》
The bony labyrinth of the middle Pleistocene Sima de los Huesos hominins (Sierra de Atapuerca, Spain).
We performed 3D virtual reconstructions based on CT scans to study the bony labyrinth morphology in 14 individuals from the large middle Pleistocene hominin sample from the site of the Sima de los Huesos (SH) in the Sierra de Atapuerca in northern Spain. The Atapuerca (SH) hominins represent early members of the Neandertal clade and provide an opportunity to compare the data with the later in time Neandertals, as well as Pleistocene and recent humans more broadly. The Atapuerca (SH) hominins do not differ from the Neandertals in any of the variables related to the absolute and relative sizes and shape of the semicircular canals. Indeed, the entire Neandertal clade seems to be characterized by a derived pattern of canal proportions, including a relatively small posterior canal and a relatively large lateral canal. In contrast, one of the most distinctive features observed in Neandertals, the low placement of the posterior canal (i.e., high sagittal labyrinthine index), is generally not present in the Atapuerca (SH) hominins. This low placement is considered a derived feature in Neandertals and is correlated with a more vertical orientation of the ampullar line (LSCm < APA), posterior surface of the petrous pyramid (LSCm > PPp), and third part of the facial canal (LSCm < FC3). Some variation is present within the Atapuerca (SH) sample, however, with a few individuals approaching the Neandertal condition more closely. In addition, the cochlear shape index in the Atapuerca (SH) hominins is low, indicating a reduction in the height of the cochlea. Although the phylogenetic polarity of this feature is less clear, the low shape index in the Atapuerca (SH) hominins may be a derived feature. Regardless, cochlear height subsequently increased in Neandertals. In contrast to previous suggestions, the expanded data in the present study indicate no difference across the genus Homo in the angle of inclination of the cochlear basal turn (COs < LSCm). Principal components analysis largely confirms these observations. While not fully resolved, the low placement of the posterior canal in Neandertals may be related to some combination of absolutely large brain size, a wide cranial base, and an archaic pattern of brain allometry. This more general explanation would not necessarily follow taxonomic lines, even though this morphology of the bony labyrinth occurs at high frequencies among Neandertals. While a functional interpretation of the relatively small vertical canals in the Neandertal clade remains elusive, the relative proportions of the semicircular canals is one of several derived Neandertal features in the Atapuerca (SH) crania. Examination of additional European middle Pleistocene specimens suggests that the full suite of Neandertal features in the bony labyrinth did not emerge in Europe until perhaps <200 kya.
Quam R
,Lorenzo C
,Martínez I
,Gracia-Téllez A
,Arsuaga JL
... -
《-》
Virtual reconstruction of the Early Pleistocene mandible ATD6-96 from Gran Dolina-TD6-2 (Sierra De Atapuerca, Spain).
In this report, we present a further study of the late Early Pleistocene ATD6-96 human mandible, recovered from the TD6-2 level of the Gran Dolina cave site (Sierra de Atapuerca, northern Spain) and attributed to Homo antecessor.
ATD6-96 consists of a left half of a gracile mandible of an adult individual with the premolars and molars in place that is broken at the level of the lateral incisor-canine septum. The present analysis is based on a virtual reconstruction of the whole mandible by means of computed tomography (CT). We have reconstructed the symphysis using information from a modern human sample, as well as from a wide sample composed of several Homo specimens.
This research has allowed us to record new variables with taxonomic and phylogenetic interest. We have estimated the length/width index of the alveolar arcade, as well as the percentage of the arcade length with regard to the total length. The latter confirms that ATD6-96 shares with all African and Asian Homo species a primitive structural pattern, as it was established in previous studies. In constrast, the length/width index of the alveolar arcade in the H. antecessor specimen is close to the mean values of Neandertals and the Atapuerca-Sima de los Huesos hominins.
H. antecessor is derived regarding the shape of the mandibular alveolar arcade within the genus Homo and points to an early divergence from contemporaneous African populations. Our results also ratify the affinities of H. antecessor with Neanderthals, although the precise relationship with this lineage needs further research.
Bermúdez de Castro JM
,Martín-Francés L
,Modesto-Mata M
,Martínez de Pinillos M
,Martinón-Torres M
,García-Campos C
,Carretero JM
... -
《-》