WIP is necessary for matrix invasion by breast cancer cells.

来自 PUBMED

作者:

García EMachesky LMJones GEAntón IM

展开

摘要:

Actin filament assembly and reorganisation during cell migration and invasion into extracellular matrices is a well-documented phenomenon. Among actin-binding proteins regulating its polymerisation, the members of the WASP (Wiskott Aldrich Syndrome Protein) family are generally thought to play the most significant role in supporting cell invasiveness. In situ, cytosolic N-WASP (neural WASP) is associated with a partner protein termed WIP (WASP Interacting Protein) that is bound to the N-terminal domain of N-WASP. Despite much effort, rather little is known about the role of WIP in regulating N-WASP and consequent actin-filament assembly. Even less is known about the function of WIP within the specialised cell adhesion and attachment structures known as podosomes and invadopodia. In particular, whilst the interaction of WIP with known participants in the development and maturation of invadopodia such as N-WASP, the Arp2/3 complex and cortactin has been described, little is known concerning the direct contribution of WIP to invadopodia and its potential role as a regulator of cancer cell invasion. In this report, we use 2D and 3D culture systems to describe the role played by WIP in modulating the morphology and invasiveness of metastatic breast cancer cells in vitro, as well as its effect on the process of mesenchymal-epithelial transition (MET) seen in these cells. We demonstrate that WIP is necessary for invadopodium formation and matrix degradation by basal breast cancer cells, but not sufficient to induce invasiveness in luminal cells.

收起

展开

DOI:

10.1016/j.ejcb.2014.07.008

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读