Akt2 mediates TGF-β1-induced epithelial to mesenchymal transition by deactivating GSK3β/snail signaling pathway in renal tubular epithelial cells.

来自 PUBMED

作者:

Lan AQi YDu J

展开

摘要:

The epithelial-mesenchymal transition (EMT) induced by growth factors or cytokines, particularly transforming growth factor-β (TGF-β1), plays an important role in kidney tubulointerstitial injury. However, signaling pathways mediating TGF-β1-induced EMT are not precisely known. In this study, we examined the role of Akt2 on EMT. HK-2 cells were exposed to 10 ng/ml TGF-β1 to establish a model of EMT. The expression of proteins were detected by western blot assay and Immunofluorescence. The levels of genes were tested by RT-PCR. We found that treatment of HK-2 cells, a human proximal tubular cell line, with 10 ng/ml TGF-β1 resulted in activation of phosphatidylinositol 3-kinase (PI3K)/Akt2 signaling as evidenced by increased p-PI3K, Akt2 and p-Akt (Ser 473) expression. Importantly, TGF-β1 treatment decreased zona occludins 1 (ZO-1) and E-cadherin (epithelial markers) expression, increased fibronectin and vimentin (mesenchymal makers) expression, which were prevented by Ly294002 (the inhibitor of PI3K) or small interfering RNA (siAkt2), suggesting that Akt2 mediated TGF-β1-induced EMT. Meanwhile, RNA and protein levels of Snail1, the key inducer of EMT, were significantly elevated in TGF-β1-treated HK-2 cells. TGF-β1 also induced inactivation of glycogen synthase kinase-3β (GSK3β), an endogenous inhibitor of Snail. Knockdown of Akt2 using siRNAs or the PI3K inhibitor Ly294002 inhibited TGF-β1-induced phosphorylation of GSK3β and expression of Snail1. These findings revealed that knockdown of Akt2 antagonized TGF-β1-induced EMT by inhibiting GSK3β/Snail signaling pathway.

收起

展开

DOI:

10.1159/000363006

被引量:

32

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(507)

参考文献(0)

引证文献(32)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读