CFP10 and ESAT6 aptamers as effective Mycobacterial antigen diagnostic reagents.

来自 PUBMED

作者:

Tang XLZhou YXWu SMPan QXia BZhang XL

展开

摘要:

The development of effective Mycobacterial antigen diagnostic reagents remains a high priority. The 6-kDa early secreted antigenic target (ESAT6) and 10-kDa culture filtrate protein (CFP10) are secreted early by virulent Mycobacterium tuberculosis (M. tb) and are not present in the non-virulent Bacillus Calmette-Guerin (BCG). In this study, we used a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technique to screen for a functional ssDNA aptamer "antibody" that specifically bound to ESAT6-CFP10 (CE) protein. The selected single ssDNA aptamers (CE24 and CE15) demonstrated the highest specificity and binding affinity to CFP10 (CE24: Kd = 3.75 × 10(-7) M) and ESAT6 (CE15: Kd = 1.6 × 10(-7) M). We further detected CFP10 and ESAT6 proteins in serum samples from active pulmonary tuberculosis (TB) patients, extrapulmonary TB patients and healthy donors by using an enzyme-linked oligonucleotide assay (ELONA). The results showed that the sensitivity and specificity were 100% and 94.1% (using CE24 aptamer-based ELONA) and 89.6% and 94.1% (using CE15 aptamer-based ELONA), respectively. A good correlation was observed between aptamer-based ELONA and T-SPOT TB assay. Thus, our study suggests that CE24 and CE15 have potentially broad applications as early antigen diagnostic agents not only for active pulmonary TB, extrapulmonary TB, but also possibly for latent TB infection and TB with immune-deficiency.

收起

展开

DOI:

10.1016/j.jinf.2014.05.015

被引量:

34

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(149)

参考文献(0)

引证文献(34)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读