Comparative analysis of Gram's stain, PNA-FISH and Sepsityper with MALDI-TOF MS for the identification of yeast direct from positive blood cultures.

来自 PUBMED

作者:

Gorton RLRamnarain PBarker KStone NRattenbury SMcHugh TDKibbler CC

展开

摘要:

Fungaemia diagnosis could be improved by reducing the time to identification of yeast from blood cultures. This study aimed to evaluate three rapid methods for the identification of yeast direct from blood cultures; Gram's stain analysis, the AdvanDX Peptide Nucleic Acid in Situ Hybridisation Yeast Traffic Light system (PNA-FISH YTL) and Bruker Sepsityper alongside matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS). Fifty blood cultures spiked with a known single yeast strain were analysed by blinded operators experienced in each method. Identifications were compared with MALDI-TOF MS CHROMagar Candida culture and ITS rRNA sequence-based identifications. On first attempt, success rates of 96% (48/50) and 76% (36/50) were achieved using PNA-FISH YTL and Gram's stain respectively. MALDI-TOF MS demonstrated a success rate of 56% (28/50) when applying manufacturer's species log score thresholds and 76% (38/50) using in-house parameters, including lowering the species log score threshold to >1.5. In conclusion, PNA-FISH YTL demonstrated a high success rate successfully identifying yeast commonly encountered in fungaemia. Sepsityper(™) with MALDI-TOF MS was accurate but increased sensitivity is required. Due to the misidentification of commonly encountered yeast Gram's stain analysis demonstrated limited utility in this setting.

收起

展开

DOI:

10.1111/myc.12205

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(206)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读