NT-PGC-1α activation attenuates high-fat diet-induced obesity by enhancing brown fat thermogenesis and adipose tissue oxidative metabolism.
摘要:
The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α(-/-) mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α(254)) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α(-/-) mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity. Despite a large decrease in locomotor activity, FL-PGC-1α(-/-) mice exhibited the surprising ability to attenuate HFD-induced obesity. Reduced fat mass in FL-PGC-1α(-/-) mice was closely associated with an increase in body temperature, energy expenditure, and whole-body fatty acid oxidation (FAO). Mechanistically, FL-PGC-1α(-/-) brown adipose tissue had an increased capacity to oxidize fatty acids and dissipate energy as heat, in accordance with upregulation of thermogenic genes UCP1 and DIO2. Furthermore, augmented expression of FAO and lipolytic genes in FL-PGC-1α(-/-) white adipose tissue was highly correlated with decreased fat storage in adipose tissue. Collectively, our data highlight a protective effect of NT-PGC-1α on diet-induced obesity by enhancing diet-induced thermogenesis and FAO.
收起
展开
DOI:
10.2337/db13-1837
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(50)
引证文献(26)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无