Morning and evening oscillators cooperate to reset circadian behavior in response to light input.
摘要:
Light is a crucial input for circadian clocks. In Drosophila, short light exposure can robustly shift the phase of circadian behavior. The model for this resetting posits that circadian photoreception is cell autonomous: CRYPTOCHROME senses light, binds to TIMELESS (TIM), and promotes its degradation, which is mediated by JETLAG (JET). However, it was recently proposed that interactions between circadian neurons are also required for phase resetting. We identify two groups of neurons critical for circadian photoreception: the morning (M) and the evening (E) oscillators. These neurons work synergistically to reset rhythmic behavior. JET promotes acute TIM degradation cell autonomously in M and E oscillators but also nonautonomously in E oscillators when expressed in M oscillators. Thus, upon light exposure, the M oscillators communicate with the E oscillators. Because the M oscillators drive circadian behavior, they must also receive inputs from the E oscillators. Hence, although photic TIM degradation is largely cell autonomous, neural cooperation between M and E oscillators is critical for circadian behavioral photoresponses.
收起
展开
DOI:
10.1016/j.celrep.2014.03.044
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(101)
参考文献(32)
引证文献(22)
来源期刊
影响因子:9.985
JCR分区: 暂无
中科院分区:暂无