A fullerene-based multi-functional nanoplatform for cancer theranostic applications.
摘要:
Recently, nanomaterials with multiple functions, such as drug carrier, MRI and optical imaging, photothermal therapy etc, have become more and more popular in the domain of cancer research. In this study, a C60-IONP nanocomposite is synthesized via decorating iron oxide nanoparticles (IONP) onto fullerene (C60) and then functionalized by polyethylene glycol (PEG2000), giving C60-IONP-PEG with excellent stability in physiological solutions, finally folic acid (FA), a widely used tumor targeting molecule, was linked to C60-IONP-PEG in order to obtain an active tumor targeting effect to MCF-7 cells and malignant tumor in mice models. Herein, a hybrid nanoplatform with multi-functional characteristics for cancer diagnosis, photodynamic therapy (PDT), radiofrequency (RF) thermal therapy (RTT) and magnetic targeting applications was developed and explored its biofunctions in vitro and in vivo. C60-IONP-PEG-FA showed neglectable toxicity, not only served as a powerful tumor diagnostic magnetic resonance imaging (MRI) contrast agent, but also as a strong photosensitizer and powerful agent for photothermal ablation of tumor, furthermore a remarkable synergistic enhancement of PDT combination with RTT was also observed during the treatment both in vitro and in vivo. Moreover, the multi-functional nanoplatform also could selectively kill cancer cells in highly localized regions via the excellent active tumor targeting and magnetic targeted abilities. This work showed the multi-functional C60-IONP-PEG-FA nanoplatform had a great potential for cancer theranostic applications.
收起
展开
DOI:
10.1016/j.biomaterials.2014.03.071
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(280)
参考文献(0)
引证文献(25)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无