4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway.
Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10(-6)M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of cathepsin B. These effects of mouse model resulted in an increased potential for metastasis in breast cancer. Taken together, we determined that OP can adversely affect human health by promoting cancer proliferation and metastasis through the amplification of cathepsins B and D via the ER-mediated signaling pathway.
Lee HR
,Choi KC
《-》
Inhibitory effects of 3,3'-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer.
As a phytoestrogen, 3,3'-diindolylmethane (DIM) plays a chemopreventive role by inhibiting cancer progression. In this study, we examined the effects of 17β-estradiol (E2), two endocrine disrupting chemicals (EDCs), triclosan (TCS) and bisphenol A (BPA), and DIM on epithelial-mesenchymal transition (EMT) and metastatic behaviors of estrogen receptor (ER)-positive MCF-7 breast cancer cells. An in vitro assay revealed that E2 (10-9 M), TCS (10-5-10-7 M), and BPA (10-5-10-7 M) induced MCF-7 cell proliferation compared to a control through the ER pathway. In addition, E2, TCS, and BPA changed the cell morphology from the epithelial to the mesenchymal phenotype and increased the migration and invasion capacity of MCF-7 cells via ER; however, co-treatment with DIM (20 μM) effectively suppressed E2, TCS, and BPA-induced cell proliferation, EMT, migration, and invasion of MCF-7 cells. Western blot assay revealed that DIM regulated the protein expression of EMT- and metastasis-related genes toward the inhibition of these processes. Moreover, E2, TCS, and BPA increased the protein expression of CXCR4, which is a receptor of chemokine CXCL12 that is positively involved in breast cancer metastasis via an ER-dependent pathway. Conversely, DIM and a CXCR4 antagonist (AMD3100) decreased CXCR4 protein expression, which led to inhibition of the EMT process, indicating that DIM may suppress E2, TCS or BPA-induced EMT, migration, and invasion of MCF-7 breast cancer cells by suppressing CXCR4 protein expression. These in vitro effects of E2, TCS, BPA, and DIM were also identified in a xenografted mouse model transplanted with MCF-7 breast cancer cells. Taken together, DIM is a potent chemopreventive compound for preventing metastatic behaviors of breast cancer cells induced by EDCs with cancer-related toxicity.
Lee GA
,Hwang KA
,Choi KC
《-》
Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway.
Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.
Kim JY
,Yi BR
,Go RE
,Hwang KA
,Nam KH
,Choi KC
... -
《-》
Benzophenone-1 stimulated the growth of BG-1 ovarian cancer cells by cell cycle regulation via an estrogen receptor alpha-mediated signaling pathway in cellular and xenograft mouse models.
2,4-Dihydroxybenzophenone (benzophenone-1; BP-1) is an UV stabilizer primarily used to prevent polymer degradation and deterioration in quality due to UV irradiation. Recently, BP-1 has been reported to bioaccumulate in human bodies by absorption through the skin and has the potential to induce health problems including endocrine disruption. In the present study, we examined the xenoestrogenic effect of BP-1 on BG-1 human ovarian cancer cells expressing estrogen receptors (ERs) and relevant xenografted animal models in comparison with 17-β estradiol (E2). In in vitro cell viability assay, BP-1 (10(-8)-10(-5)M) significantly increased BG-1 cell growth the way E2 did. The mechanism underlying the BG-1 cell proliferation was proved to be related with the up-regulation of cyclin D1, a cell cycle progressor, by E2 or BP-1. Both BP-1 and E2 induced cell growth and up-regulation of cyclin D1 were reversed by co-treatment with ICI 182,780, an ER antagonist, suggesting that BP-1 may mediate the cancer cell proliferation via an ER-dependent pathway like E2. On the other hand, the expression of p21, a regulator of cell cycle progression at G1 phase, was not altered by BP-1 though it was down-regulated by E2. In xenograft mouse models transplanted with BG-1 cells, BP-1 or E2 treatment significantly increased the tumor mass formation compared to a vehicle (corn oil) within 8 weeks. In histopathological analysis, the tumor sections of E2 or BP-1 group displayed extensive cell formations with high density and disordered arrangement, which were supported by the increased number of BrdUrd positive nuclei and the over-expression of cyclin D1 protein. Taken together, these results suggest that BP-1 is an endocrine disrupting chemical (EDC) that exerts xenoestrogenic effects by stimulating the proliferation of BG-1 ovarian cancer via ER signaling pathway associated with cell cycle as did E2.
Park MA
,Hwang KA
,Lee HR
,Yi BR
,Jeung EB
,Choi KC
... -
《-》