Validation of the Spanish version of the 9-item Shared Decision-Making Questionnaire.

来自 PUBMED

摘要:

To translate and assess the psychometric properties of the 9-item Shared Decision-Making Questionnaire (SDM-Q-9) for measuring patients' perceptions of how clinicians' performance fits the SDM process. Cross-sectional study. Data were collected in primary care health centres. Patients suffering from chronic diseases and facing a medical decision were included in the study. The original German SDM-Q-9 was translated to Spanish using the process of cross-cultural adaptation of self-reported measures as the methodological model for Spanish translation. Reliability (internal consistency) and construct validity [exploratory (EFA) and confirmatory factor analysis (CFA)] were assessed. The final Spanish version of the SDM-Q-9 was tested in a primary care sample of 540 patients. The SDM-Q-9 presented adequate reliability and acceptable validity. Internal consistency yielded a Cronbach's alpha of 0.885 for the whole scale. EFA showed a two-factorial solution, and for the CFA, the best solution was obtained with a one-dimensional factor with the item 1 excluded, which produced the best indexes of fit. The Spanish version of the SDM-Q-9 showed adequate reliability and acceptable validity parameters among primary care patients. The SDM-Q-9 is suitable for use in Spain and other Spanish-speaking countries with similarly organized health-care systems. The use of the SDM-Q-9 may contribute to the evaluation of SDM process from the patient's perspective.

收起

展开

DOI:

10.1111/hex.12183

被引量:

32

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(455)

参考文献(20)

引证文献(32)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读