Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release.
摘要:
Thermo/pH-sensitive/fluorescent/biocompatible nanospheres consisting of quantum dots-embedded mesoporous silica nanoparticles (Q-MS) as a core and poly(N-isopropylacrylamide (NIPAM))-graft-chitosan (CS) nanogels as a shell (PNIPAM-g-CS) were prepared via temperature-regulated one-pot copolymerization of NIPAM monomer and CS in the presence of Q-MS. The prepared nanospheres exhibited remarkable fluorescence/thermo/pH-sensitivity. HepG2 cells treated with nanospheres displayed bright fluorescence imaging. Loading efficiency and capacity of Doxorubicin (Dox) into nanospheres were regularly increased with the increment of Dox concentration. At a high temperature and a low pH, cumulative in vitro release of Dox from Dox-loaded nanospheres was much great and fast. Released Dox still retained high anticancer activity, and blank nanosphere carriers produced neglectful toxicity to HepG2 cells. The multifunctional nanospheres could be further developed toward temperature/pH-regulated drug carriers for in vivo tumor therapy with a rapid drug release and fluorescence imaging in targeted tissues.
收起
展开
DOI:
10.1016/j.colsurfb.2014.01.044
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(772)
参考文献(0)
引证文献(3)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无