Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene.

来自 PUBMED

作者:

Zhao MLiu WXia XWang TZhang WH

展开

摘要:

To evaluate the role of ethylene in cold acclimation and cold stress, freezing tolerance and characteristics associated with cold acclimation were investigated using legume model plant Medicago truncatula Gaertn Jemalong A17. There was a rapid suppression of ethylene production during cold acclimation in A17 plants. Ethylene level was negatively correlated with freezing tolerance as inhibition of ethylene biosynthesis by inhibitors of ethylene biosynthesis enhanced freezing tolerance, while exogenous application of ethylene reduced cold acclimation-induced freezing tolerance. The involvement of ethylene signaling in modulation of freezing tolerance and cold acclimation was further studied using ethylene-insensitive mutant sickle skl. Although skl mutant was more tolerant to freezing than its wild-type counterpart A17 plants, cold acclimation enhanced freezing tolerance in 17 plants, but not in skl mutant. Expression of several ethylene response genes including EIN3, EIN3/EIL and ERFs was suppressed in skl mutant compared to A17 plants under non-cold-acclimated conditions. Cold acclimation downregulated expression of EIN3, EIN3/EIL and ERFs in A17 plants, while expression patterns of these genes were relatively constant in skl mutant during cold acclimation. Cold acclimation-induced increases in transcription of MtCBFs and MtCAS15 were suppressed in skl mutant compared with A17 plants. These results suggest that MtSKL1 is required for perception of the change of ethylene level in M. truncatula plants for the full development of the cold acclimation response by suppressing expression of MtEIN3 and MtEIN3/EIL1, which in turn downregulates expression of MtERFs, leading to the enhanced tolerance of M. truncatula to freezing by upregulating MtCBFs and MtCAS15.

收起

展开

DOI:

10.1111/ppl.12161

被引量:

40

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(442)

参考文献(0)

引证文献(40)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读