A chondromimetic microsphere for in situ spatially controlled chondrogenic differentiation of human mesenchymal stem cells.
摘要:
Human mesenchymal stem cells (hMSCs) have been identified as a viable cell source for cartilage tissue engineering. However, to undergo chondrogenic differentiation hMSCs require growth factors, in particular members of the transforming growth factor beta (TGF-β) family. While in vitro differentiation is feasible through continuous supplementation of TGF-β3, mechanisms to control and drive hMSCs down the chondrogenic lineage in their native microenvironment remain a significant challenge. The release of TGF-β3 from an injectable microsphere composed of the cartilage-associated extracellular matrix molecule hyaluronan represents a readily translatable approach for in situ differentiation of hMSCs for cartilage repair. In this study, chondromimetic hyaluronan microspheres were used as a growth factor delivery source for hMSC chondrogenesis. Cellular compatibility of the microspheres (1.2 and 14.1 μm) with hMSCs was shown and release of TGF-β3 from the most promising 14.1 μm microspheres to control differentiation of hMSCs was evaluated. Enhanced accumulation of cartilage-associated glycosaminoglycans by hMSCs incubated with TGF-β3-loaded microspheres was seen and positive staining for collagen type II and proteoglycan confirmed successful in vitro chondrogenesis. Gene expression analysis showed significantly increased expression of the chondrocyte-associated genes, collagen type II and aggrecan. This delivery platform resulted in significantly less collagen type X expression, suggesting the generation of a more stable cartilage phenotype. When evaluated in an ex vivo osteoarthritic cartilage model, implanted hMSCs with TGF-β3-loaded HA microspheres were detected within cartilage fibrillations and increased proteoglycan staining was seen in the tissue. In summary, data presented here demonstrate that TGF-β3-bound hyaluronan microspheres provide a suitable delivery system for induction of hMSC chondrogenesis and their use may represent a clinically feasible tissue engineering approach for the treatment of articular cartilage defects.
收起
展开
DOI:
10.1016/j.jconrel.2014.01.023
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1426)
参考文献(0)
引证文献(14)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无