-
Non-invasive prenatal testing for fetal chromosomal abnormalities by low-coverage whole-genome sequencing of maternal plasma DNA: review of 1982 consecutive cases in a single center.
To review the performance of non-invasive prenatal testing (NIPT) by low-coverage whole-genome sequencing of maternal plasma DNA at a single center.
The NIPT result and pregnancy outcome of 1982 consecutive cases were reviewed. NIPT was based on low coverage (0.1×) whole-genome sequencing of maternal plasma DNA. All subjects were contacted for pregnancy and fetal outcome.
Of the 1982 NIPT tests, a repeat blood sample was required in 23 (1.16%). In one case, a conclusive report could not be issued, probably because of an abnormal vanished twin fetus. NIPT was positive for common trisomies in 29 cases (23 were trisomy 21, four were trisomy 18 and two were trisomy 13); all were confirmed by prenatal karyotyping (specificity=100%). In addition, 11 cases were positive for sex-chromosomal abnormalities (SCA), and nine cases were positive for other aneuploidies or deletion/duplication. Fourteen of these 20 subjects agreed to undergo further investigations, and the abnormality was found to be of fetal origin in seven, confined placental mosaicism (CPM) in four, of maternal origin in two and not confirmed in one. Overall, 85.7% of the NIPT-suspected SCA were of fetal origin, and 66.7% of the other abnormalities were caused by CPM. Two of the six cases suspected or confirmed to have CPM were complicated by early-onset growth restriction requiring delivery before 34 weeks. Fetal outcome of the NIPT-negative cases was ascertained in 1645 (85.15%). Three chromosomal abnormalities were not detected by NIPT, including one case each of a balanced translocation, unbalanced translocation and triploidy. There were no known false negatives involving the common trisomies (sensitivity=100%).
Low-coverage whole-genome sequencing of maternal plasma DNA was highly accurate in detecting common trisomies. It also enabled the detection of other aneuploidies and structural chromosomal abnormalities with high positive predictive value.
Lau TK
,Cheung SW
,Lo PS
,Pursley AN
,Chan MK
,Jiang F
,Zhang H
,Wang W
,Jong LF
,Yuen OK
,Chan HY
,Chan WS
,Choy KW
... -
《-》
-
Non-invasive prenatal testing for trisomies 21, 18 and 13: clinical experience from 146,958 pregnancies.
To report the clinical performance of massively parallel sequencing-based non-invasive prenatal testing (NIPT) in detecting trisomies 21, 18 and 13 in over 140,000 clinical samples and to compare its performance in low-risk and high-risk pregnancies.
Between 1 January 2012 and 31 August 2013, 147,314 NIPT requests to screen for fetal trisomies 21, 18 and 13 using low-coverage whole-genome sequencing of plasma cell-free DNA were received. The results were validated by karyotyping or follow-up of clinical outcomes.
NIPT was performed and results obtained in 146,958 samples, for which outcome data were available in 112,669 (76.7%). Repeat blood sampling was required in 3213 cases and 145 had test failure. Aneuploidy was confirmed in 720/781 cases positive for trisomy 21, 167/218 cases positive for trisomy 18 and 22/67 cases positive for trisomy 13 on NIPT. Nine false negatives were identified, including six cases of trisomy 21 and three of trisomy 18. The overall sensitivity of NIPT was 99.17%, 98.24% and 100% for trisomies 21, 18 and 13, respectively, and specificity was 99.95%, 99.95% and 99.96% for trisomies 21, 18 and 13, respectively. There was no significant difference in test performance between the 72,382 high-risk and 40,287 low-risk subjects (sensitivity, 99.21% vs. 98.97% (P = 0.82); specificity, 99.95% vs. 99.95% (P = 0.98)). The major factors contributing to false-positive and false-negative NIPT results were maternal copy number variant and fetal/placental mosaicism, but fetal fraction had no effect.
Using a stringent protocol, the good performance of NIPT shown by early validation studies can be maintained in large clinical samples. This technique can provide equally high sensitivity and specificity in screening for trisomy 21 in a low-risk, as compared to high-risk, population.
Zhang H
,Gao Y
,Jiang F
,Fu M
,Yuan Y
,Guo Y
,Zhu Z
,Lin M
,Liu Q
,Tian Z
,Zhang H
,Chen F
,Lau TK
,Zhao L
,Yi X
,Yin Y
,Wang W
... -
《-》
-
Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory.
Since its debut in 2011, cell-free fetal DNA screening has undergone rapid expansion with respect to both utilization and coverage. However, conclusive data regarding the clinical validity and utility of this screening tool, both for the originally included common autosomal and sex-chromosomal aneuploidies as well as the more recently added chromosomal microdeletion syndromes, have lagged behind. Thus, there is a continued need to educate clinicians and patients about the current benefits and limitations of this screening tool to inform pre- and posttest counseling, pre/perinatal decision making, and medical risk assessment/management.
The objective of this study was to determine the positive predictive value and false-positive rates for different chromosomal abnormalities identified by cell-free fetal DNA screening using a large data set of diagnostic testing results on invasive samples submitted to the laboratory for confirmatory studies.
We tested 712 patient samples sent to our laboratory to confirm a cell-free fetal DNA screening result, indicating high risk for a chromosome abnormality. We compiled data from all cases in which the indication for confirmatory testing was a positive cell-free fetal DNA screen, including the common trisomies, sex chromosomal aneuploidies, microdeletion syndromes, and other large genome-wide copy number abnormalities. Testing modalities included fluorescence in situ hybridization, G-banded karyotype, and/or chromosomal microarray analysis performed on chorionic villus samples, amniotic fluid, or postnatally obtained blood samples. Positive predictive values and false-positive rates were calculated from tabulated data.
The positive predictive values for trisomy 13, 18, and 21 were consistent with previous reports at 45%, 76%, and 84%, respectively. For the microdeletion syndrome regions, positive predictive values ranged from 0% for detection of Cri-du-Chat syndrome and Prader-Willi/Angelman syndrome to 14% for 1p36 deletion syndrome and 21% for 22q11.2 deletion syndrome. Detection of sex chromosomal aneuploidies had positive predictive values of 26% for monosomy X, 50% for 47,XXX, and 86% for 47,XXY.
The positive predictive values for detection of common autosomal and sex chromosomal aneuploidies by cell-free fetal DNA screening were comparable with other studies. Identification of microdeletions was associated with lower positive predictive values and higher false-positive rates, likely because of the low prevalence of the individual targeted microdeletion syndromes in the general population. Although the obtained positive predictive values compare favorably with those seen in traditional screening approaches for common aneuploidies, they highlight the importance of educating clinicians and patients on the limitations of cell-free fetal DNA screening tests. Improvement of the cell-free fetal DNA screening technology and continued monitoring of its performance after introduction into clinical practice will be important to fully establish its clinical utility. Nonetheless, our data provide valuable information that may aid result interpretation, patient counseling, and clinical decision making/management.
Petersen AK
,Cheung SW
,Smith JL
,Bi W
,Ward PA
,Peacock S
,Braxton A
,Van Den Veyver IB
,Breman AM
... -
《-》
-
Secondary findings from non-invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service.
To report secondary or additional findings arising from introduction of non-invasive prenatal testing (NIPT) for aneuploidy by whole genome sequencing as a clinical service.
Five cases with secondary findings were reviewed.
In Case 1, NIPT revealed a large duplication in chromosome 18p, which was supported by arrayCGH of amniocyte DNA, with final karyotype showing mosaic tetrasomy 18p. In Case 2, a deletion in the proximal long arm of chromosome 18 of maternal origin was suspected and confirmed by arrayCGH of maternal white cell DNA. In Case 3, NIPT was negative for trisomies 21 and 18. In-depth analysis for deletions/duplications was requested when fetal structural anomalies were detected at routine scan. A deletion in the proximal long arm of chromosome 3 was found and confirmed by karyotyping. In Case 4, NIPT correctly predicted confined placental mosaicism with triple trisomy involving chromosomes X, 7 and 21. In Case 5, NIPT correctly detected a previously unknown maternal mosaicism for 45X.
Non-invasive prenatal testing is able to detect a wide range of fetal, placental and maternal chromosomal abnormalities. This has important implications on patient counseling when an abnormality is detected by NIPT.
Lau TK
,Jiang FM
,Stevenson RJ
,Lo TK
,Chan LW
,Chan MK
,Lo PS
,Wang W
,Zhang HY
,Chen F
,Choy KW
... -
《-》
-
Implementation of non-invasive prenatal testing by semiconductor sequencing in a genetic laboratory.
To implement non-invasive prenatal testing (NIPT) for fetal aneuploidies with semiconductor sequencing in an academic cytogenomic laboratory and to evaluate the first 15-month experience on clinical samples.
We validated a NIPT protocol for cell-free fetal DNA sequencing from maternal plasma for the detection of trisomy 13, 18 and 21 on a semiconductor sequencing instrument. Fetal DNA fraction calculation for all samples and several quality parameters were implemented in the workflow. One thousand eighty-one clinical NIPT samples were analysed, following the described protocol.
Non-invasive prenatal testing was successfully implemented and validated on 201 normal and 74 aneuploid samples. From 1081 clinical samples, 17 samples showed an abnormal result: 14 trisomy 21 samples, one trisomy 18 and one trisomy 16 were detected. Also a maternal copy number variation on chromosome 13 was observed, which could potentially lead to a false positive trisomy 13 result. One sex discordant result was reported, possibly attributable to a vanishing twin. Moreover, our combined fetal fraction calculation enabled a more reliable risk estimate for trisomy 13, 18 and 21.
Non-invasive prenatal testing for trisomy 21, 18 and 13 has a very high specificity and sensitivity. Because of several biological phenomena, diagnostic invasive confirmation of abnormal results remains required. © 2016 The Authors. Prenatal Diagnosis published by John Wiley & Sons, Ltd.
Dheedene A
,Sante T
,De Smet M
,Vanbellinghen JF
,Grisart B
,Vergult S
,Janssens S
,Menten B
... -
《-》