-
Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry.
Mid-infrared (MIR) spectrometry was used to estimate the fatty acid (FA) composition in cow, ewe, and goat milk. The objectives were to compare different statistical approaches with wavelength selection to predict the milk FA composition from MIR spectra, and to develop equations for FA in cow, goat, and ewe milk. In total, a set of 349 cow milk samples, 200 ewe milk samples, and 332 goat milk samples were both analyzed by MIR and by gas chromatography, the reference method. A broad FA variability was ensured by using milk from different breeds and feeding systems. The methods studied were partial least squares regression (PLS), first-derivative pretreatment + PLS, genetic algorithm + PLS, wavelets + PLS, least absolute shrinkage and selection operator method (LASSO), and elastic net. The best results were obtained with PLS, genetic algorithm + PLS and first derivative + PLS. The residual standard deviation and the coefficient of determination in external validation were used to characterize the equations and to retain the best for each FA in each species. In all cases, the predictions were of better quality for FA found at medium to high concentrations (i.e., for saturated FA and some monounsaturated FA with a coefficient of determination in external validation >0.90). The conversion of the FA expressed in grams per 100mL of milk to grams per 100g of FA was possible with a small loss of accuracy for some FA.
Ferrand-Calmels M
,Palhière I
,Brochard M
,Leray O
,Astruc JM
,Aurel MR
,Barbey S
,Bouvier F
,Brunschwig P
,Caillat H
,Douguet M
,Faucon-Lahalle F
,Gelé M
,Thomas G
,Trommenschlager JM
,Larroque H
... -
《-》
-
Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries.
Increasing consumer concern exists over the relationship between food composition and human health. Because of the known effects of fatty acids on human health, the development of a quick, inexpensive, and accurate method to directly quantify the fatty acid (FA) composition in milk would be valuable for milk processors to develop a payment system for milk pertinent to their customer requirements and for farmers to adapt their feeding systems and breeding strategies accordingly. The aim of this study was (1) to confirm the ability of mid-infrared spectrometry (MIR) to quantify individual FA content in milk by using an innovative procedure of sampling (i.e., samples were collected from cows belonging to different breeds, different countries, and in different production systems); (2) to compare 6 mathematical methods to develop robust calibration equations for predicting the contents of individual FA in milk; and (3) to test interest in using the FA equations developed in milk as basis to predict FA content in fat without corrections for the slope and the bias of the developed equations. In total, 517 samples selected based on their spectral variability in 3 countries (Belgium, Ireland, and United Kingdom) from various breeds, cows, and production systems were analyzed by gas chromatography (GC). The samples presenting the largest spectral variability were used to calibrate the prediction of FA by MIR. The remaining samples were used to externally validate the 28 FA equations developed. The 6 methods were (1) partial least squares regression (PLS); (2) PLS+repeatability file (REP); (3) first derivative of spectral data+PLS; (4) first derivative+REP+PLS; (5) second derivative of spectral data+PLS; and (6) second derivative+REP+PLS. Methods were compared on the basis of the cross-validation coefficient of determination (R2cv), the ratio of standard deviation of GC values to the standard error of cross-validation (RPD), and the validation coefficient of determination (R2v). The third and fourth methods had, on average, the highest R2cv, RPD, and R2v. The final equations were built using all GC and the best accuracy was observed for the infrared predictions of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, C18:1 trans, C18:1 cis-9, C18:1 cis, and for some groups of FA studied in milk (saturated, monounsaturated, unsaturated, short-chain, medium-chain, and long-chain FA). These equations showed R2cv greater than 0.95. With R2cv equal to 0.85, the MIR prediction of polyunsaturated FA could be used to screen the cow population. As previously published, infrared predictions of FA in fat are less accurate than those developed from FA content in milk (g/dL of milk) and no better results were obtained by using milk FA predictions if no corrections for bias and slope based on reference milk samples with known contents of FA were used. These results indicate the usefulness of equations with R2cv greater than 95% in milk payment systems and the usefulness of equations with R2cv greater than 75% for animal breeding purposes.
Soyeurt H
,Dehareng F
,Gengler N
,McParland S
,Wall E
,Berry DP
,Coffey M
,Dardenne P
... -
《-》
-
Variable selection procedures before partial least squares regression enhance the accuracy of milk fatty acid composition predicted by mid-infrared spectroscopy.
Mid-infrared spectroscopy is a high-throughput technique that allows the prediction of milk quality traits on a large-scale. The accuracy of prediction achievable using partial least squares (PLS) regression is usually high for fatty acids (FA) that are more abundant in milk, whereas it decreases for FA that are present in low concentrations. Two variable selection methods, uninformative variable elimination or a genetic algorithm combined with PLS regression, were used in the present study to investigate their effect on the accuracy of prediction equations for milk FA profile expressed either as a concentration on total identified FA or a concentration in milk. For FA expressed on total identified FA, the coefficient of determination of cross-validation from PLS alone was low (0.25) for the prediction of polyunsaturated FA and medium (0.70) for saturated FA. The coefficient of determination increased to 0.54 and 0.95 for polyunsaturated and saturated FA, respectively, when FA were expressed on a milk basis and using PLS alone. Both algorithms before PLS regression improved the accuracy of prediction for FA, especially for FA that are usually difficult to predict; for example, the improvement with respect to the PLS regression ranged from 9 to 80%. In general, FA were better predicted when their concentrations were expressed on a milk basis. These results might favor the use of prediction equations in the dairy industry for genetic purposes and payment system.
Gottardo P
,Penasa M
,Lopez-Villalobos N
,De Marchi M
... -
《-》
-
Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data.
The aim of this study was to assess the performance of Bayesian models commonly used for genomic selection to predict "difficult-to-predict" dairy traits, such as milk fatty acid (FA) expressed as percentage of total fatty acids, and technological properties, such as fresh cheese yield and protein recovery, using Fourier-transform infrared (FTIR) spectral data. Our main hypothesis was that Bayesian models that can estimate shrinkage and perform variable selection may improve our ability to predict FA traits and technological traits above and beyond what can be achieved using the current calibration models (e.g., partial least squares, PLS). To this end, we assessed a series of Bayesian methods and compared their prediction performance with that of PLS. The comparison between models was done using the same sets of data (i.e., same samples, same variability, same spectral treatment) for each trait. Data consisted of 1,264 individual milk samples collected from Brown Swiss cows for which gas chromatographic FA composition, milk coagulation properties, and cheese-yield traits were available. For each sample, 2 spectra in the infrared region from 5,011 to 925 cm(-1) were available and averaged before data analysis. Three Bayesian models: Bayesian ridge regression (Bayes RR), Bayes A, and Bayes B, and 2 reference models: PLS and modified PLS (MPLS) procedures, were used to calibrate equations for each of the traits. The Bayesian models used were implemented in the R package BGLR (http://cran.r-project.org/web/packages/BGLR/index.html), whereas the PLS and MPLS were those implemented in the WinISI II software (Infrasoft International LLC, State College, PA). Prediction accuracy was estimated for each trait and model using 25 replicates of a training-testing validation procedure. Compared with PLS, which is currently the most widely used calibration method, MPLS and the 3 Bayesian methods showed significantly greater prediction accuracy. Accuracy increased in moving from calibration to external validation methods, and in moving from PLS and MPLS to Bayesian methods, particularly Bayes A and Bayes B. The maximum R(2) value of validation was obtained with Bayes B and Bayes A. For the FA, C10:0 (% of each FA on total FA basis) had the highest R(2) (0.75, achieved with Bayes A and Bayes B), and among the technological traits, fresh cheese yield R(2) of 0.82 (achieved with Bayes B). These 2 methods have proven to be useful instruments in shrinking and selecting very informative wavelengths and inferring the structure and functions of the analyzed traits. We conclude that Bayesian models are powerful tools for deriving calibration equations, and, importantly, these equations can be easily developed using existing open-source software. As part of our study, we provide scripts based on the open source R software BGLR, which can be used to train customized prediction equations for other traits or populations.
Ferragina A
,de los Campos G
,Vazquez AI
,Cecchinato A
,Bittante G
... -
《-》
-
Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets.
The fatty acid profile of milk is a prevailing issue due to the potential negative or positive effects of different fatty acids to human health and nutrition. Mid-infrared spectroscopy can be used to obtain predictions of otherwise costly fatty acid phenotypes in a widespread and rapid manner. The objective of this study was to evaluate the prediction of fatty acid content for the Canadian dairy cattle population from mid-infrared spectral data and to compare the results produced by altering the partial least squares (PLS) model development set used. The PLS model development sets used to develop the predictions were reference fatty acids expressed as (1) grams per 100 g of fatty acid, (2) grams per 100 g of milk, (3) the natural logarithmic transform of grams per 100 g of milk, and (4) subsets of samples randomly selected by removing excess records around the mean to present a more uniform distribution, repeated 10 times. Gas chromatography measured fatty acid concentration and spectral data for 2,023 milk samples of 373 cows from 4 breeds and 44 herds were used in the model development. The coefficient of determination of cross-validation (Rcv2) increased when fatty acids were expressed on a per 100 g of milk basis compared with on a per 100 g of fat basis for all examined fatty acids. The logarithmic transformation used to create a more Gaussian distribution in the development set had little effect on the prediction accuracy. The individual fatty acids C12:0, C14:0, C16:0, C18:0, C18:1n-9 cis, and saturated, monounsaturated, unsaturated, short-chain, medium-chain, and long-chain fatty acid groups had (Rcv2) greater than 0.70. When model development was performed with subsets of the original samples, slight increases in (Rcv2) values were observed for the majority of fatty acids. The difference in (Rcv2) between the top- and bottom-performing prediction equation across the different subsets for a single predicted fatty acid was on average 0.055 depending on which samples were randomly selected to be used in the PLS model development set. Predictions for fatty acids with high accuracies can be used to monitor fatty acid contents for cows in milk recording programs and possibly for genetic evaluation.
Fleming A
,Schenkel FS
,Chen J
,Malchiodi F
,Bonfatti V
,Ali RA
,Mallard B
,Corredig M
,Miglior F
... -
《-》