Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons.
Increasing evidence has shown that β-amyloid (Aβ) induces hyperphosphorylation of tau and contributes to Aβ toxicity. Recently, tau hyperphosphorylation by glycogen synthase kinase-3β (GSK-3β) activation has been emphasized as one of the pathogenic mechanisms of Alzheimer's disease (AD). The phosphoinositide 3 kinase (PI3K)/Akt pathway is known as an upstream element of GSK-3β. The inhibitory control of GSK-3β, via the PI3K/Akt pathway, is an important mechanism of cell survival. In the present study, we investigated the neuroprotective effects of Angelica sinensis (AS), a traditional Chinese herbal medicine, against Aβ(1-42) toxicity in cultured cortical neurons and also the potential involvement of PI3K/Akt/GSK-3β signal pathway. We revealed that AS extract significantly attenuated Aβ(1-42) -induced neurotoxicity and tau hyperphosphorylation at multiple AD-related sites in a dose-dependent manner. Simultaneously, it increased the levels of phospho-Ser(473) -Akt and down-regulated GSK-3β activity by PI3K activation. The neuroprotective effects of AS extract against Aβ(1-42) -induced neurotoxicity and tau hyperphosphorylation were blocked by LY294002 (10 μM), a PI3K inhibitor. In addition, AS extract reversed the Aβ(1-42) -induced decrease in phosphorylation cyclic AMP response element binding protein (CREB), which could be blocked by the PI3K inhibitor. These results suggest that AS-mediated neuroprotection against Aβ toxicity is likely mediated by the PI3K/Akt/GSK-3β signal pathway.
Zhang Z
,Zhao R
,Qi J
,Wen S
,Tang Y
,Wang D
... -
《-》
Naringin Protects against Tau Hyperphosphorylation in Aβ (25-35)-Injured PC12 Cells through Modulation of ER, PI3K/AKT, and GSK-3β Signaling Pathways.
Alzheimer's disease (AD) is the most common form of dementia and a significant social and economic burden. Estrogens can exert neuroprotective effects and may contribute to the prevention, attenuation, or even delay in the onset of AD; however, long-term estrogen therapy is associated with harmful side effects. Thus, estrogen alternatives are of interest for countering AD. Naringin, a phytoestrogen, is a key active ingredient in the traditional Chinese medicine Drynaria. Naringin is known to protect against nerve injury induced by amyloid beta-protein (Aβ) 25-35, but the underlying mechanisms of this protection are unclear. To investigate the mechanisms of naringin neuroprotection, we observed the protective effect on Aβ 25-35-injured C57BL/6J mice's learning and memory ability and hippocampal neurons. Then, an Aβ 25-35 injury model was established with adrenal phaeochromocytoma (PC12) cells. We examined the effect of naringin treatment on Aβ 25-35-injured PC12 cells and its relationship with estrogen receptor (ER), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), and glycogen synthase kinase (GSK)-3β signaling pathways. Estradiol (E2) was used as a positive control for neuroprotection. Naringin treatment resulted in improved learning and memory ability, the morphology of hippocampal neurons, increased cell viability, and reduced apoptosis. We next examined the expression of ERβ, p-AKT (Ser473, Thr308), AKT, p-GSK-3β (Ser9), GSK-3β, p-Tau (Thr231, Ser396), and Tau in PC12 cells treated with Aβ 25-35 and either naringin or E2, with and without inhibitors of the ER, PI3K/AKT, and GSK-3β pathways. Our results demonstrated that naringin inhibits Aβ 25-35-induced Tau hyperphosphorylation by modulating the ER, PI3K/AKT, and GSK-3β signaling pathways. Furthermore, the neuroprotective effects of naringin were comparable to those of E2 in all treatment groups. Thus, our results have furthered our understanding of naringin's neuroprotective mechanisms and indicate that naringin may comprise a viable alternative to estrogen therapy.
Qiu Q
,Lei X
,Wang Y
,Xiong H
,Xu Y
,Sun H
,Xu H
,Zhang N
... -
《-》
Ginsenoside Rd attenuates beta-amyloid-induced tau phosphorylation by altering the functional balance of glycogen synthase kinase 3beta and protein phosphatase 2A.
Neurofibrillary tangles are aggregates of hyperphosphorylated tau that are one of the pathological hallmarks of Alzheimer's disease (AD). Tau phosphorylation is regulated by a balance of kinase and phosphatase activities. Our previous study has demonstrated that ginsenoside Rd, one of the principal active ingredients of Pana notoginseng, inhibits okadaic acid-induced tau phosphorylation in vivo and in vitro, but the underlying mechanism(s) is unknown. In this study, we showed that ginsenoside Rd pretreatment inhibited tau phosphorylation at multiple sites in beta-amyloid (Aβ)-treated cultured cortical neurons, and in vivo in both a rat and transgenic mouse model. Ginsenoside Rd not only reduced Aβ-induced increased expression of glycogen synthase kinase 3beta (GSK-3β), the most important kinase involved in tau phosphorylation, but also inhibited its activity by enhancing and attenuating its phosphorylation at Ser9 and Tyr216, respectively. Moreover, ginsenoside Rd enhanced the activity of protein phosphatase 2A (PP-2A), a key phosphatase involved in tau dephosphorylation. Finally, an in vitro biochemical assay revealed that ginsenoside Rd directly affected GSK-3β and PP-2A activities. Thus, our findings provide the first evidence that ginsenoside Rd attenuates Aβ-induced pathological tau phosphorylation by altering the functional balance of GSK-3β and PP-2A.
Li L
,Liu Z
,Liu J
,Tai X
,Hu X
,Liu X
,Wu Z
,Zhang G
,Shi M
,Zhao G
... -
《-》