SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion of Salmonella enterica.

来自 PUBMED

作者:

Wille TWagner CMittelstädt WBlank KSommer EMalengo GDöhler DLange ASourjik VHensel MGerlach RG

展开

摘要:

The giant non-fimbrial adhesin SiiE is essential to establish intimate contact between Salmonella enterica and the apical surface of polarized epithelial cells. SiiE is secreted by a type I secretion system (T1SS) encoded by Salmonella Pathogenicity Island 4 (SPI4). We identified SiiA and SiiB as two regulatory proteins encoded by SPI4. Mutant strains in siiA or siiB still secrete SiiE, but are highly reduced in adhesion to, and invasion of polarized cells. SiiA and SiiB are inner membrane proteins with one and three transmembrane (TM) helices respectively. TM2 and TM3 of SiiB are similar to members of the ExbB/TolQ family, while the TM of SiiA is similar to MotB and a conserved aspartate residue in this TM is essential for SPI4-encoded T1SS function. Co-immunoprecipitation, bacterial two-hybrid and FRET demonstrate homo- and heterotypic protein interactions for SiiA and SiiB. SiiB, but not SiiA also interacts with the SPI4-T1SS ATPase SiiF. The integrity of the Walker A box in SiiF was required for SiiB-SiiF interactionand SiiF dimer formation. Based on these data, we describe SiiA and SiiB as new, exclusively virulence-associated members of the Mot/Exb/Tol family of membrane proteins. Both proteins are involved in a novel mechanism of controlling SPI4-T1SS-dependent adhesion, most likely by formation of a proton-conducting channel.

收起

展开

DOI:

10.1111/cmi.12222

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(48)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读