Multiple listing for pediatric heart transplantation in the U.S.A.: analysis of OPTN registry data from 1995 through 2009.

来自 PUBMED

作者:

Feingold BPark SYComer DMWebber SABryce CL

展开

摘要:

Multiple listing is associated with shorter waitlist durations and increased likelihood of transplantation for renal candidates. Little is known about multiple listing in pediatric heart transplantation. We examined the prevalence and outcomes of multiple listing using OPTN data from 1995 through 2009. Characteristics and waitlist outcomes of propensity-score-matched single- and multiple-listed patients were compared. Multiple listing occurred in 23 of 6290 listings (0.4%). Median days between listings was 35 (0-1015) and median duration of multiple listings was 32 days (3-363). Among multiple-listed patients, there were trends toward less ECMO use (0% vs. 11%, p = 0.1) and more frequent requirement for a prospective cross-match (17% vs. 8%, p = 0.08). Multiple-listed patients more commonly had private insurance (78% vs. 56%; p = 0.03). Urgency status at listing was similar between groups (1/1A: 61% vs. 64%, 1B/2: 39 vs. 36%; p = 0.45) as were weight, age, diagnosis, ventilator/inotrope use, and median income (each p ≥ 0.17). There was a trend toward increased incidence of heart transplantation for multiple-listed patients at three, six, and 24 months (50%, 65%, 80%) vs. single-listed patients (40%, 54%, 64%; p = 0.11). Multiple listing for pediatric heart transplantation in the USA occurs infrequently and is more common in patients with private insurance.

收起

展开

DOI:

10.1111/petr.12162

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(140)

参考文献(8)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读