Phthalates and the diets of U.S. children and adolescents.
Di-2-ethylhexylphthalate (DEHP) is an ester of phthalic acid commonly found in processed foods. DEHP may contribute to obesity and insulin resistance in children and adolescents, yet dietary exposures have been not been studied in this vulnerable subpopulation.
To assess diet and its relation to urinary phthalates in a nationally representative sample of US children and adolescents.
Cross-sectional analysis of 24-h dietary recall and urinary phthalate metabolites from 2743 6-19 year olds participating in the 2003-8 National Health and Nutrition Examination Surveys. Regression analyses examined relationships of food consumption with log-transformed metabolite concentrations, examined as low-molecular weight, high molecular weight and di-2-ethylhexylphthalate categories, controlling for urinary creatinine, age group, body mass index category, race/ethnicity, caloric intake and gender.
We identified a -0.04% (95% CI: -0.08, -0.01) increment in di-2-ethylhexylphthalate metabolite concentration/additional gram fruit consumption, a +0.01% increment/additional calorie dietary intake (95% CI: +0.003, +0.02), and a +0.09% (95% CI: +0.02, +0.17) increment/additional gram meat/poultry/fish consumption. Soy consumption (-0.40% increment/additional gram consumed, 95% CI: -0.66, -0.14) was inversely associated with di-2-ethylhexylphthalate, while poultry (+0.23% increment/additional gram consumed, 95% CI: +0.12, +0.35) was positively associated. Findings were robust to examination of metabolite concentrations per unit body mass index and weight, and inclusion of fasting time.
Diet contributes to urinary phthalate concentrations in children and adolescents. Further study is needed to examine the implications of di-2-ethylhexylphthalate exposure, especially earlier in life, when more permanent metabolic changes may occur.
Trasande L
,Sathyanarayana S
,Jo Messito M
,S Gross R
,Attina TM
,Mendelsohn AL
... -
《-》
Biomonitoring of phthalate metabolites in the Canadian population through the Canadian Health Measures Survey (2007-2009).
Human exposure to phthalates occurs through multiple sources and pathways. In the Canadian Health Measures Survey 2007-2009, 11 phthalate metabolites, namely, MMP, MEP, MnBP, MBzP, MCHP, MCPP, MEHP, MEOHP, MEHHP, MnOP, and MiNP were measured in urine samples of 6-49 year old survey respondents (n=3236). The phthalate metabolites biomonitoring data from this nationally-representative Canadian survey are presented here. The metabolites MEP, MnBP, MBzP, MCPP, MEHP, MEOHP and MEHHP were detected in >90% of Canadians while MMP, MCHP, MnOP and MiNP were detected in <20% of the Canadian population. Step-wise regression analyses were carried out to identify important predictors of volumetric concentrations (μg/L) of the metabolites in the general population. Individual multiple regression models with covariates age, sex, creatinine, fasting status, and the interaction terms age×creatinine, age×sex and fasting status×creatinine were constructed for MEP, MnBP, MBzP, MCPP, MEHP, MEOHP and MEHHP. The least square geometric mean (LSGM) estimates for volumetric concentration (μg/L) of the metabolites derived from respective regression models were used to assess the patterns in the metabolite concentrations among population sub-groups. The results indicate that children had significantly higher urinary concentrations of MnBP, MBzP, MEHP, MEHHP, MEOHP and MCPP than adolescents and adults. Moreover, MEP, MBzP, MnBP and MEOHP concentrations in females were significantly higher than in males. We observed that fasting status significantly affects the concentrations of MEHP, MEHHP, MEOHP, and MCPP metabolites analyzed in this study. Moreover, our results indicate that the sampling time could affect the DEHP metabolite concentrations in the general Canadian population.
Saravanabhavan G
,Guay M
,Langlois É
,Giroux S
,Murray J
,Haines D
... -
《-》
Predictors of urinary bisphenol A and phthalate metabolite concentrations in Mexican children.
Exposure to endocrine disrupting chemicals such as bisphenol A (BPA) and phthalates is prevalent among children and adolescents, but little is known regarding important sources of exposure at these sensitive life stages. In this study, we measured urinary concentrations of BPA and nine phthalate metabolites in 108 Mexican children aged 8-13 years. Associations of age, time of day, and questionnaire items on external environment, water use, and food container use with specific gravity-corrected urinary concentrations were assessed, as were questionnaire items concerning the use of 17 personal care products in the past 48-h. As a secondary aim, third trimester urinary concentrations were measured in 99 mothers of these children, and the relationship between specific gravity-corrected urinary concentrations at these two time points was explored. After adjusting for potential confounding by other personal care product use in the past 48-h, there were statistically significant (p<0.05) positive associations in boys for cologne/perfume use and monoethyl phthalate (MEP), mono(3-carboxypropyl) phthalate (MCPP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and in girls for colored cosmetics use and mono-n-butyl phthalate (MBP), mono(2-ethylhexyl) phthalate (MEHP), MEHHP, MEOHP, and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), conditioner use and MEP, deodorant use and MEP, and other hair products use and MBP. There was a statistically significant positive trend for the number of personal care products used in the past 48-h and log-MEP in girls. However, there were no statistically significant associations between the analytes and the other questionnaire items and there were no strong correlations between the analytes measured during the third trimester and at 8-13 years of age. We demonstrated that personal care product use is associated with exposure to multiple phthalates in children. Due to rapid development, children may be susceptible to impacts from exposure to endocrine disrupting chemicals; thus, reduced or delayed use of certain personal care products among children may be warranted.
Lewis RC
,Meeker JD
,Peterson KE
,Lee JM
,Pace GG
,Cantoral A
,Téllez-Rojo MM
... -
《-》
Urinary phthalates are associated with higher blood pressure in childhood.
To examine associations of urinary phthalate levels with blood pressure (BP) and serum triglyceride and lipoprotein levels in children.
We performed a cross-sectional analysis of a subsample of US children aged 6-19 years who participated in the National Health and Nutrition Examination Survey between 2003 and 2008. We quantified exposure to 3 families of phthalates--low molecular weight, high molecular weight and di-2-ethylhexylphthalate (DEHP)--based on molar concentration of urinary metabolites. We assessed descriptive, bivariate, and multivariate associations with BP and lipid levels.
Controlling for an array of sociodemographic and behavioral factors, as well as diet and body mass index, levels of metabolites of DEHP, a phthalate commonly found in processed foods, were associated with higher age-, sex-, and height-standardized BP. For each log unit (roughly 3-fold) increase in DEHP metabolites, a 0.041 SD unit increase in systolic BP z-score was identified (P = .047). Metabolites of low molecular weight phthalates commonly found in cosmetics and personal care products were not associated with BP. Phthalate metabolites were not associated with triglyceride levels, high-density lipoprotein level, or prehypertension.
Dietary phthalate exposure is associated with higher systolic BP in children and adolescents. Further work is needed to confirm these associations, as well as to evaluate opportunities for intervention.
Trasande L
,Sathyanarayana S
,Spanier AJ
,Trachtman H
,Attina TM
,Urbina EM
... -
《-》