Three-dimensional evaluation of upper airway in patients with different anteroposterior skeletal patterns.

来自 PUBMED

作者:

Zheng ZHYamaguchi TKurihara ALi HFMaki K

展开

摘要:

To investigate variability in the upper airway of subjects with different anteroposterior skeletal patterns by evaluating the volume and the most constricted cross-sectional area of the pharyngeal airway and defining correlations between the different variables. The study sample consisted of 60 patients (29 boys, 31 girls) divided into three groups: Class I (1 ≤ ANB ≤ 3), Class II (ANB>3), and Class III (ANB<1), to evaluate how the jaw relationship affects the airway volume and the most constricted cross-sectional area (Min-CSA). Differences between groups were determined using the Tukey-Kramer test. Correlations between variables were tested using Pearson's correlation coefficient. The volume and the Min-CSA of the pharyngeal airway (PA) were significantly related to anteroposterior skeletal patterns (p < 0.05). The nasopharyngeal airway (NA) volume of Class I and Class III subjects was significantly larger than that of Class II subjects (p < 0.05). The Min-CSA and the length of PA were significantly related to the volume of PA (p < 0.05). The site and the size of the Min-CSA varied among the three groups. The volume and the most constricted cross-sectional area of the airway varied with different anteroposterior skeletal patterns. The NA volume of Class I and Class III subjects was significantly larger than that of patients with a Class II skeletal pattern.

收起

展开

DOI:

10.1111/ocr.12029

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(448)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读