Exercise training attenuates aging-associated mitochondrial dysfunction in rat skeletal muscle: role of PGC-1α.
摘要:
Aged skeletal muscle demonstrates declines in muscle mass and deterioration of mitochondrial content and function. Peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) plays an important role in promoting muscle mitochondrial biogenesis in response to exercise training, but its role in senescent muscle is not clear. In the present study we hypothesize that a downregulation of the PGC-1α signaling pathway contributes to mitochondrial deterioration in aged muscle whereas endurance training ameliorates the deficits. Three groups of Fischer 344/BNF1 rats were used: young, sedentary (Y, 4 months); old, sedentary (O, 22 months); and old trained (OT, 22 months), subjected to treadmill running at 17.5 m/min, 10% grade for 45 min/day, 5 days/week for 12-weeks. PGC-1α mRNA and nuclear PGC-1α protein content in the soleus muscle were both decreased in O vs. Y rats, whereas OT rats showed a 2.3 and 1.8-fold higher PGC-1α content than O and Y rats, respectively (P<0.01). Mitochondrial transcription factor A (Tfam), cytochrome c (Cyt c) and mitochondrial (mt) DNA contents were significantly decreased in O vs. Y rats, but elevated by 2.2 (P<0.01), 1.4 (P<0.05) and 2.4-fold (P<0.01), respectively, in OT vs. O rats. In addition, Tfam and mtDNA showed 1.6 and 1.8-fold (P<0.01) higher levels, respectively, in OT vs. Y rats. These adaptations were accompanied by significant increases in the expression of the phosphorylated form of AMP-activated kinase (AMPK) (P<0.01), p38 mitogen-activated kinase (MAPK) (P<0.05) and silent mating type information regulator 2 homolog 1 (SIRT1) (P<0.01) in OT rats. Furthermore, OT rats showed great levels of phosphorylation in cAMP responsive element binding protein (p-CREB) and DNA binding compared to O and Y rats. These data indicate that endurance training can attenuate aging-associated decline in mitochondrial protein synthesis in skeletal muscle partly due to upregulation of PGC-1α signaling.
收起
展开
DOI:
10.1016/j.exger.2013.08.004
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(1753)
参考文献(0)
引证文献(88)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无