Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice.
摘要:
Previously our study has demonstrated that long-term treadmill exercise improved cognitive deficit in APP/PS1 transgenic mice of Alzheimer's disease (AD) paralleled by enhanced long-term potentiation (LTP). The present study was undertaken to further investigate whether the treadmill running could inhibit the progression of Alzheimer's disease (AD)-like neuropathology in hippocampus of the APP/PS1 mouse models of AD, and to define a potential molecular mechanism underlying the exercise-induced reduction in AD-like neuropathology. Five months of treadmill exercise resulted in a robust reduction in β-amyloid (Aβ) deposition and tau phosphorylation in the hippocampus of APP/PS1 mice. This was accompanied by a significant decrease in APP phosphorylation and PS1 expression. We also observed GSK3, rather than CDK5, was inhibited by treadmill exercise. These results indicate that treadmill exercise is sufficient to inhibit the progression of AD-like neuropathology in the hippocampus of APP/PS1 transgenic mouse model, and may mediate APP processing in favor of reduced Aβ deposition. In addition, we demonstrate that treadmill exercise attenuates AD-like neuropathology in AD transgenic mice via a GSK3 dependent signaling pathway.
收起
展开
DOI:
10.1016/j.bbr.2013.08.008
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(2301)
参考文献(0)
引证文献(49)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无