Identification and quantitative analysis of β-cryptoxanthin and β-citraurin esters in Satsuma mandarin fruit during the ripening process.
In this study, to investigate the xanthophyll accumulation in citrus fruits, the major fatty acid esters of β-cryptoxanthin and β-citraurin were identified, and changes in their contents were investigated in two Satsuma mandarin varieties, 'Miyagawa-wase' and 'Yamashitabeni-wase', during the ripening process. The results showed that β-cryptoxanthin and β-citraurin were mainly esterified with lauric acid, myristic acid, and palmitic acid in citrus fruits. During the ripening process, β-cryptoxanthin laurate, myristate, and palmitate were accumulated gradually in the flavedos and juice sacs of the two varieties. In the flavedo of 'Yamashitabeni-wase', β-citraurin laurate, myristate, and palmitate were specifically accumulated, and their contents increased rapidly with a peak in November. In addition, functional analyses showed that CitCCD1 and CitCCD4 efficiently cleaved the free β-cryptoxanthin, but not the β-cryptoxanthin esters in vitro. The substrate specificity of CitCCDs towards free β-cryptoxanthin indicated that β-cryptoxanthin esters might be more stable than free β-cryptoxanthin in citrus fruits.
Ma G
,Zhang L
,Iida K
,Madono Y
,Yungyuen W
,Yahata M
,Yamawaki K
,Kato M
... -
《-》
Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit.
The relationship between carotenoid accumulation and the expression of carotenoid biosynthetic genes during fruit maturation was investigated in three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). We cloned the cDNAs for phytoene synthase (CitPSY), phytoene desaturase (CitPDS), zeta-carotene (car) desaturase (CitZDS), carotenoid isomerase (CitCRTISO), lycopene beta-cyclase (CitLCYb), beta-ring hydroxylase (CitHYb), zeaxanthin (zea) epoxidase (CitZEP), and lycopene epsilon-cyclase (CitLCYe) from Satsuma mandarin, which shared high identities in nucleotide sequences with Valencia orange, Lisbon lemon, and other plant species. With the transition of peel color from green to orange, the change from beta,epsilon-carotenoid (alpha-car and lutein) accumulation to beta,beta-carotenoid (beta-car, beta-cryptoxanthin, zea, and violaxanthin) accumulation was observed in the flavedos of Satsuma mandarin and Valencia orange, accompanying the disappearance of CitLCYe transcripts and the increase in CitLCYb transcripts. Even in green fruit, high levels of beta,epsilon-carotenoids and CitLCYe transcripts were not observed in the juice sacs. As fruit maturation progressed in Satsuma mandarin and Valencia orange, a simultaneous increase in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb, CitHYb, and CitZEP) led to massive beta,beta-xanthophyll (beta-cryptoxanthin, zea, and violaxanthin) accumulation in both the flavedo and juice sacs. The gene expression of CitCRTISO was kept low or decreased in the flavedo during massive beta,beta-xanthophyll accumulation. In the flavedo of Lisbon lemon and Satsuma mandarin, massive accumulation of phytoene was observed with a decrease in the transcript level for CitPDS. Thus, the carotenoid accumulation during citrus fruit maturation was highly regulated by the coordination of the expression among carotenoid biosynthetic genes. In this paper, the mechanism leading to diversity in beta,beta-xanthophyll compositions between Satsuma mandarin and Valencia orange was also discussed on the basis of the substrate specificity of beta-ring hydroxylase and the balance of expression between upstream synthesis genes (CitPSY, CitPDS, CitZDS, and CitLCYb) and downstream synthesis genes (CitHYb and CitZEP).
Kato M
,Ikoma Y
,Matsumoto H
,Sugiura M
,Hyodo H
,Yano M
... -
《-》