Attenuating activity of the ovary on LH response to GnRH during the follicular phase of the cycle.

来自 PUBMED

作者:

Dimitraki MMessini CIDafopoulos KGioka TKoutlaki NGaras AGeorgoulias PMessinis IE

展开

摘要:

Oestradiol sensitizes the pituitary to GnRH, while gonadotrophin surge attenuating factor (GnSAF) may oppose this action. Using the LH response to GnRH during treatment with FSH as an in vivo bioassay for GnSAF, we tested the hypothesis that the augmented LH response to GnRH in the late follicular phase is related to reduced production of GnSAF from the ovulatory follicle. Prospective intervention study. Ten healthy, normally cycling women. The LH response to 10 μg GnRH i.v. (ΔLH) was investigated on days 2 and 3 and on days v (follicle size 16-17 mm) and v + 1 of cycle 1 (control) and cycle 2. On days 2 and v, a single s.c. injection of either normal saline (cycle 1) or 450 IU recombinant FSH (cycle 2) was given after the end of the GnRH experiment. FSH injection increased both serum oestradiol and inhibin B. In cycle 1, ΔLH remained unchanged from days 2 to 3 but increased significantly from days v to v + 1. In contrast, in cycle 2, ΔLH decreased significantly from days 2 to 3 (P < 0·05) and showed a nonsignificant increase from day v to day v + 1. The percentage difference in ΔLH between cycle 1 and cycle 2 was similar on days 3 (-66·9 ± 17·5%) and v + 1 (-65·2 ± 3·6%). These results suggest that during the follicular phase of the menstrual cycle, GnSAF is produced by small antral follicles, while the contribution of the ovulatory follicle is minimal.

收起

展开

DOI:

10.1111/cen.12306

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(88)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读