Isothiocyanates protect against oxidized LDL-induced endothelial dysfunction by upregulating Nrf2-dependent antioxidation and suppressing NFκB activation.
摘要:
Oxidative stress plays a pivotal role in the pathophysiology of cardiovascular diseases. Oxidized low-density lipoprotein (oxLDL) is a key contributor to atherogenesis through multiple mechanisms. In this study, we investigated the protection by three structurally related isothiocyanates, i.e., sulforaphane (SFN), benzyl isothiocyanate (BITC), and phenethyl isocyanate (PEITC), against oxLDL-induced leukocyte adhesion to vascular endothelium and the mechanism involved. The protection against oxLDL-induced endothelial dysfunction by isothiocyanates was studied in human umbilical vein endothelial cells (HUVECs). oxLDL increased reactive oxygen species (ROS) production, stimulated nuclear factor-kappaB (NFκB) activation, and enhanced intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin expression in HUVECs, which led to promotion of monocyte adhesion to HUVECs. Treatment with SFN, BITC, and PEITC (0-10 μM) dose-dependently induced heme oxygenase (HO)-1, glutamate cysteine ligase (GCL) catalytic and modifier subunit expression, intracellular glutathione content, and antioxidant response element (ARE)-luciferase reporter activity. SFN, BITC, and PEITC pretreatment reversed oxLDL-induced ROS production, NFκB nuclear translocation, κB-reporter activity, ICAM-1, VCAM-1, and E-selectin expression, and monocyte adhesion to endothelial cells. Both heme oxygenase 1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown attenuated the isothiocyanate inhibition of oxLDL-induced ROS production, κB-reporter activity, and adhesion molecule expression. SFN, BITC, and PEITC protect against oxLDL-induced endothelial damage by upregulating Nrf2-dependent HO-1 and GCL expression, which leads to inhibition of NFκB activation and ICAM-1, VCAM-1, and E-selectin expression.
收起
展开
DOI:
10.1002/mnfr.201300063
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(614)
参考文献(0)
引证文献(37)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无