Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species.

来自 PUBMED

作者:

Piednoël MCarrete-Vega GRenner SS

展开

摘要:

Comparisons of closely related species are needed to understand the fine-scale dynamics of retrotransposon evolution in flowering plants. Towards this goal, we classified the long terminal repeat (LTR) retrotransposons from six diploid and one tetraploid species of Orobanchaceae. The study species are the autotrophic, non-parasitic Lindenbergia philippensis (as an out-group) and six closely related holoparasitic species of Orobanche [O. crenata, O. cumana, O. gracilis (tetraploid) and O. pancicii] and Phelipanche (P. lavandulacea and P. ramosa). All major plant LTR retrotransposon clades could be identified, and appear to be inherited from a common ancestor. Species of Orobanche, but not Phelipanche, are enriched in Ty3/Gypsy retrotransposons due to a diversification of elements, especially chromoviruses. This is particularly striking in O. gracilis, where tetraploidization seems to have contributed to the Ty3/Gypsy enrichment and led to the emergence of seven large species-specific families of chromoviruses. The preferential insertion of chromoviruses in heterochromatin via their chromodomains might have favored their diversification and enrichment. Our phylogenetic analyses of LTR retrotransposons from Orobanchaceae also revealed that the Bianca clade of Ty1/Copia and the SMART-related elements are much more widely distributed among angiosperms than previously known.

收起

展开

DOI:

10.1111/tpj.12233

被引量:

23

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(442)

参考文献(0)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读