Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie.
摘要:
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP , defined as the fraction of belowground NPP (BNPP) to NPP], and rain-use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed-grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP , and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP , RUEBNPP , and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP , RUEBNPP , and RUENPP . Clipping interacted with altered precipitation in impacting RUEANPP , RUEBNPP , and RUENPP , suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP . These findings suggest that BNPP is critical point to future research. Additionally, results from single-factor manipulative experiments should be treated with caution due to the non-additive interactive effects of warming with altered precipitation and land use (clipping).
收起
展开
DOI:
10.1111/gcb.12248
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(314)
参考文献(0)
引证文献(24)
来源期刊
影响因子:13.198
JCR分区: 暂无
中科院分区:暂无