Testicular hyperthermia induces Unfolded Protein Response signaling activation in spermatocyte.

来自 PUBMED

作者:

Kim JHPark SJKim TSPark HJPark JKim BKKim GRKim JMHuang SMChae JIPark CKLee DS

展开

摘要:

The testes of most mammals are sensitive to temperature. To survive and adapt under conditions that promote endoplasmic reticulum (ER) stress such as heat shock, cells have a self-protective mechanism against ER stress that has been termed the "Unfolded Protein Response" (UPR). However, the cellular and molecular events underlying spermatogenesis with testicular hyperthermia involved in the UPR signaling pathway under ER stress remain poorly understood. In the present study, we verified that UPR signaling via phospho-eIF2α/ATF4/GADD34, p90ATF6, and phospho-IRE1α/XBP-1 is activated with testicular hyperthermia (43 °C, 15 min/day) and induced ER stress-mediated apoptosis associated with CHOP, phospho-JNK, and caspase-3 after repetitive periods of hyperthermia. Levels of phospho-eIF2α protein of mouse spermatocytes in the testis were rapidly increased by one cycle of testicular hyperthermia. ATF4/GADD34 and p90ATF6 expression gradually increased and decreased, respectively, with repetitive cycles of hyperthermia. Spliced XBP1 mRNA as a marker of IRE1 activity was increased after one, three cycles of hyperthermia and decreased by five cycles of hyperthermia. Although the levels of anti-apoptotic phospho-JNK (p54) were gradually decreased after three cycles of hyperthermia, CHOP expression was rapidly increased. After five cycles of testicular hyperthermia, the levels of cleaved caspase-3 and TUNEL-positive apoptotic spermatocytes cells were significantly increased. Our data demonstrated that testicular hyperthermia induces UPR signaling and repetitive cycles of hyperthermia lead to apoptosis of spermatocytes in mouse testis. These results suggest a link between the UPR signaling pathway and testicular hyperthermia.

收起

展开

DOI:

10.1016/j.bbrc.2013.04.032

被引量:

33

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(913)

参考文献(0)

引证文献(33)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读