-
Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China.
The characterization of the content and source of heavy metals in soils are necessary to establish quality standards on a regional level and to assess the potential threat of metals to food safety and human health. The surface horizons of 114 agricultural soils in Dehui, a representative agricultural area in the black soil region, Northeast China, were collected and the concentrations of Cr, Ni, Cu, Zn, and Pb were analyzed. The mean values of the heavy metals were 49.7 ± 7.04, 20.8 ± 3.06, 18.9 ± 8.51, 58.9 ± 7.16, and 35.4 ± 9.18 mg kg(-1) for Cr, Ni, Cu, Zn, and Pb, respectively. Anthropic activities caused an enrichment of Cu and Pb in soils. However, metal concentrations in all samples did not exceed the guideline values of Chinese Environmental Quality Standard for Soils. Multivariate and geostatistical analyses suggested that soil Cr, Ni, and Zn had a lithogenic origin. Whereas, the elevated Cu concentrations in the study area were associated with industrial and agronomic practices, and the main sources of Pb were industrial fume, coal burning exhausts, and domestic waste. Source identification of heavy metals in agricultural soil is a basis for undertaking appropriate action to reduce metal inputs.
Sun C
,Liu J
,Wang Y
,Sun L
,Yu H
... -
《-》
-
Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China.
An extensive survey was conducted in this study to determine the spatial distribution and possible sources of heavy metals in the agricultural soils in Shunyi, a representative agricultural suburb in Beijing, China. A total of 412 surface soil samples were collected at a density of one sample per km(2), and concentrations of As, Cd, Cu, Hg, Pb and Zn were analyzed. The mean values of the heavy metals were 7.85±2.13, 0.136±0.061, 22.4±6.31, 0.073±0.049, 20.4±5.2, and 69.8±16.5 mg kg(-1) for As, Cd, Cu, Hg, Pb, and Zn, respectively, slightly higher than their background values of Beijing topsoil with the exception of Pb, but lower than the guideline values of Chinese Environmental Quality Standard for Soils. Multivariate and geostatistical analyses suggested that soil contamination of Cd, Cu and Zn was mainly derived from agricultural practices. Whereas, As and Pb were due mainly to soil parent materials, and Hg was caused by the atmospheric deposits from Beijing City. The identification of heavy metal sources in agricultural soils is a basis for undertaking appropriate action to protect soil quality.
Lu A
,Wang J
,Qin X
,Wang K
,Han P
,Zhang S
... -
《-》
-
Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
Micó C
,Recatalá L
,Peris M
,Sánchez J
... -
《CHEMOSPHERE》
-
Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China.
Hexi Corridor is the most important base of commodity grain and producing area for cash crops. However, the rapid development of agriculture and industry has inevitably led to heavy metal contamination in the soils. Multivariate statistical analysis, GIS-based geostatistical methods and Positive Matrix Factorization (PMF) receptor modeling techniques were used to understand the levels of heavy metals and their source apportionment for agricultural soil in Hexi Corridor. The results showed that the average concentrations of Cr, Cu, Ni, Pb and Zn were lower than the secondary standard of soil environmental quality; however, the concentrations of eight metals (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn) were higher than background values, and their corresponding enrichment factor values were significantly greater than 1. Different degrees of heavy metal pollution occurred in the agricultural soils; specifically, Ni had the most potential for impacting human health. The results from the multivariate statistical analysis and GIS-based geostatistical methods indicated both natural sources (Co and W) and anthropogenic sources (Cr, Cu, Mn, Ni, Pb, Ti, V and Zn). To better identify pollution sources of heavy metals in the agricultural soils, the PMF model was applied. Further source apportionment revealed that enrichments of Pb and Zn were attributed to traffic sources; Cr and Ni were closely related to industrial activities, including mining, smelting, coal combustion, iron and steel production and metal processing; Zn and Cu originated from agricultural activities; and V, Ti and Mn were derived from oil- and coal-related activities.
Guan Q
,Wang F
,Xu C
,Pan N
,Lin J
,Zhao R
,Yang Y
,Luo H
... -
《-》
-
Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.
The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil.
Chai Y
,Guo J
,Chai S
,Cai J
,Xue L
,Zhang Q
... -
《-》